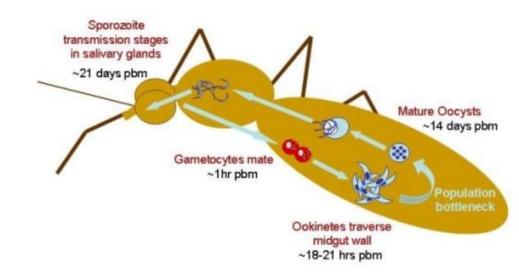


Automation of Mosquito Dissection for Malaria Vaccine Production

Computer Integrated Surgery II February 26, 2019

Group 1: Michael Pozin, Henry Phalen, Alexander Cohen

Mentors: Drs. Russell Taylor, Iulian Iordachita


Background

JOHNS HOPKINS UNIVERSITY Computational Sensing + Robotics

- Working as part of larger LCSR effort
- Small Business Innovation Research (SBIR) grant from NIH with Sanaria Inc.
- Sanaria has developed a methodology to produce a malaria vaccine
- Malaria is spread by a parasite (Plasmodium falciparum) that grows in the salivary

glands of mosquitoes (anopheles)

SANARIA MALARIA ERADICATION THROUGH VACCINATION

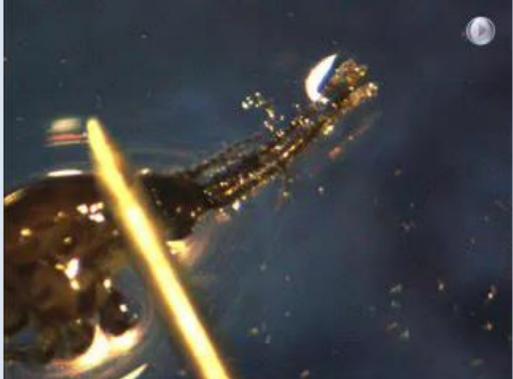
Clinical Motivation

JOHNS HOPKINS UNIVERSITY Computational Sensing + Robotics

• Malaria is a **global** health problem

- Estimated malaria deaths 2015:
 - 438,000¹
 - 666,000²
 - **730,500**³
 - Estimated clinical cases 2015: 214,000,000¹
- >\$12B GDP loss in Africa alone^{1,4}

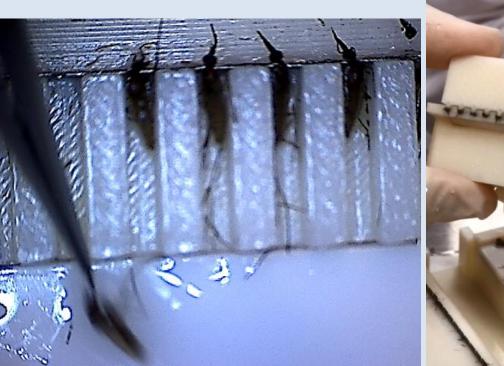
From WHO World Malaria Report 2016


- 1. World malaria report 2016. Geneva: World Health Organization; 2016.
- 2. Gething et al. N Engl J Med 375: 2435-2445, 2016.
- 3. GBD 2015 Mortality and Causes of Death Collaborators. Lancet 388: 1459-1544, 2016
- 4. Murray et al. Lancet 379: 413-431, 2012

The Project

- JOHNS HOPKINS UNIVERSITY Computational Sensing + Robotics
- To develop the vaccine, mosquitoes are bred, infected, dissected, and their salivary glands harvested and purified
- The harvested parasite sporozoites become the vaccine agent

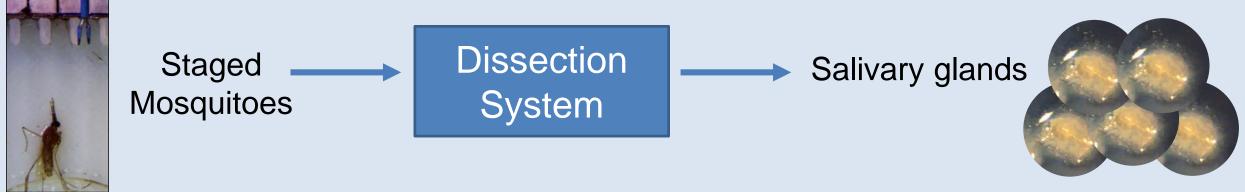
Current Dissection Procedure:


• Major bottleneck to vaccine production:

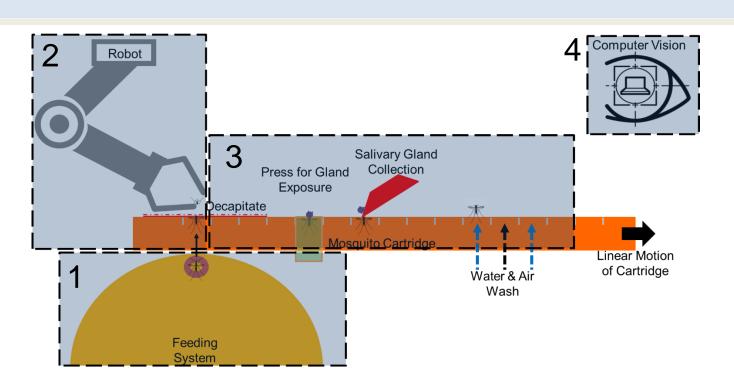
5-6 mosquitoes per minute after <u>several</u>
months of training

Prior Work

- A team from LCSR created a mechanical system to increase efficiency
- Training time reduced to ~1.5 weeks



- Place mosquito neck between a pair of blades
- 2. Squeeze out the salivary gland (and some "guts")


An Automated Approach

• Our goal is to develop an automated mosquito dissection system

Within a Larger System:

- 1. Mosquito separation
- 2. Mosquito pick-and-place
- 3. Mosquito dissection
- 4. Mosquito recognition (throughout) **Confidential**

JOHNS HOPKINS

Computational

Sensing + Robotics

Technical Approach: Outline

JOHNS HOPKINS UNIVERSITY Computational Sensing + Robotics

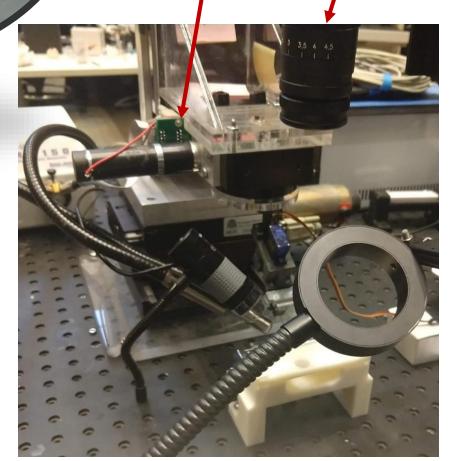
- 1. Minor changes to robotic pick-and-place assembly
 - Mosquito alignment slot geometry
- 2.Development of current dissection system
 - $\circ\, \text{Redesign}$ of downstream processes
 - Verification testing
- 3. Multi-component integration
 - \circ Timing & Code
 - Systems out of Control (Vision & Feeding/Staging System)
- 4.Rotary Stage Design
 - Develop rotating cartridge design for integration with pre-existing and developed modules

Robot Setup

Decapitation blades

Behind-blade camera

Micro-gripper


Water and the second and the second and a se

• Cartridge

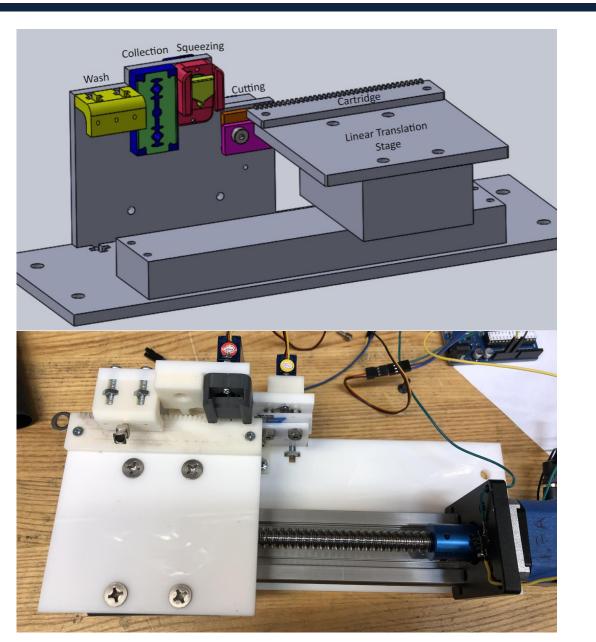
Overhead camera

Cartesian stage

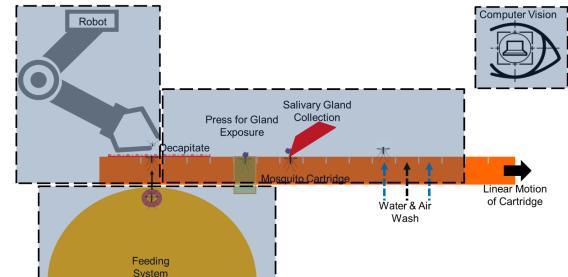
1. Changes to Pick-and-Place System

- Robot can take a image location, navigate to the site, grasp a mosquito, position between blades
- Bernstein polynomial calibration
- No downstream processing attempted

- ~85% accuracy hope to improve this
 - Minor changes to mechanical geometry
 - $\circ~$ Better use of information from vision



2. Development of current dissection system

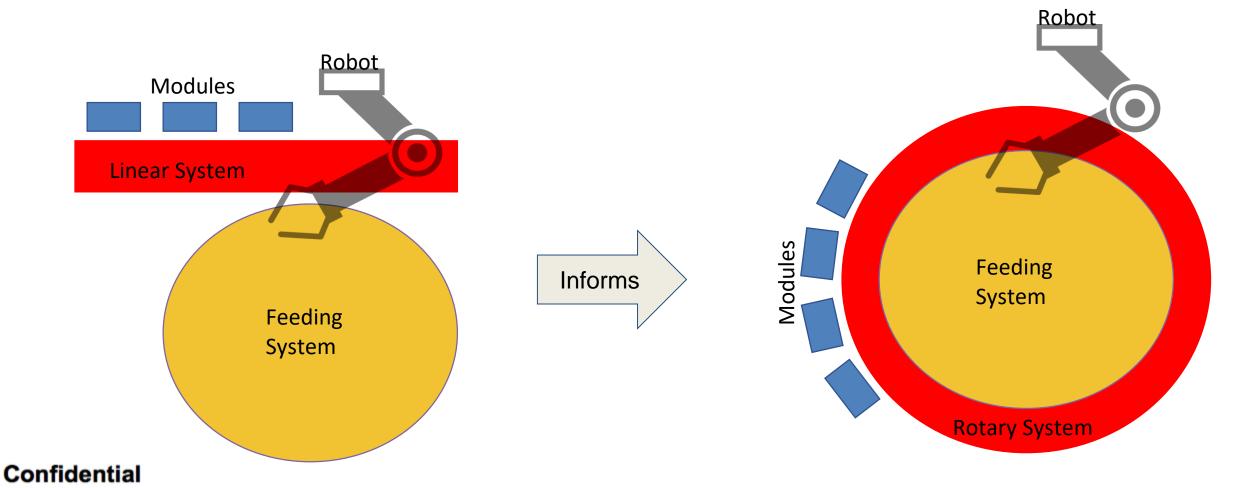

- Redesign and test downstream processes
 - 1. Cutting 🙂
 - 2. Squeezing 📛
 - 3. Gland Collection
 - 4. Wash

3. Multi-system integration

- Multi-component timing
 - Single time bottleneck (most likely robot motion)
 - Simultaneous actuation at multiple levels of system
- Code
 - High-level system control
 - ROS topics
 - Serial communication with microcontrollers
- Integration with systems out of our control
 - Vision, mosquito feeding/staging

JOHNS HOPKINS

LABORATORY FOR


Computational

Robotics

4. Rotary Stage Design

JOHNS HOPKINS UNIVERSITY Computational Sensing + Robotics

- Linear system will provide proof-of-concept of modules
- Rotary system will be developed to allow for a more streamlined process

Milestones

Responsible Member's Initials

High-lev Robot	P 3/12 /el Code for /Dissector on Complete	HP 3 Result Preliminary d Testing C	3/26 Implem s from Char Integration Ro	C MP 4/10 nent Mechanic nges, Finalize otary Design		5/7 Formal report on Vision System Integration and Systems Level Approach
2/26	3/12	3/2	6 🗙	4/9	★ 4/23	5/7
Physical Pro Gland Co Appara MP AC	atus	Dissector Installed on Robot Setup MP AC 3/18	Preliminary Testing Report 4/1	Test with 10 Mosquitoe 4/15	Integra	ation

MIN	Video of a mosquito processed from presentation to body disposal, specifically: Presentation \rightarrow Pick & Place \rightarrow Decapitation \rightarrow Squeeze \rightarrow Gland Collection \rightarrow Body Disposal								
	03/26/19								
IDEAL	Written report detailing system integration (no vision), automated dissection of 50+ mosquitoes Written report of design concept of rotary stage 04/23/19								
MAX	Written report on system integration (with vision), automated dissection of 100+ Physical prototype of rotary stage concept 05/07/19								

Dependencies

Dependency	Solution	Date Expected	Date Required	Mitigation
Access to shared setup, computer, robot in Robotorium	Coordinate with collaborators	2/26	2/28	Perform testing in off-hours
Access to Lab Pod, JH Box (Alex)	Ask Dr. Taylor for Access	2/28	2/28	N/A
Access to mosquitos (weekly basis)	Email colleagues and Sanaria to coordinate pickup	Weekly	Weekly	No testing that week, or unofficial testing with old mosq's or those in ethanol
Interface with computer vision system	Rely on collaborators to continue development	3/15	4/23	Continue to use manual user-click commands
Upstream mosquito staging system	Rely on collaborators to continue development	4/1	4/23	Dissection system can be demonstrated with human- staged mosquitoes
Money for mechanical development (e.g new stage, fabrication costs, etc).	Ask mentors as needed - grant has funding	As needed	As needed	Use what resources are available
Continued functionality of recently re- designed micro gripper	Rely on collaborators to continue ongoing improvements	2/26	2/28	Complete redesign ourselves, possibly adjust project goals

Project Lead: Henry

Group Meetings: Monday Noon - 1PM, Friday Noon - 3PM

- Robot control, high-level code, integration: Henry
- Downstream dissection : Michael & Alex
- > 2nd generation system design: Alex

Organizational Items:

- Weekly meetings with mentors and collaborators (Mondays 9-10AM)
- Any code stored in current project private Git repo
- Communication via Slack (Instant Messaging) and email
- All documentation stored in project JH Box and on course website

Reading List

• "Protection Against Malaria by Intravenous Immunization with a Nonreplicating Sporozoite Vaccine" Robert A. Seder, et al. *Science 2013.*

JOHNS HOPKINS

Computational

- "Protection of Humans against Malaria by Immunization with Radiation-Attenuated Plasmodium falciparum Sporozoites." Stephen L. Hoffman, et al. *Journal of Infectious Diseases 2002.*
- Richie, Thomas L., et al. "Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines." Vaccine 33.52 (2015): 7452-7461.
- "An Efficient Production Process for Extracting Salivary Glands from Mosquitoes" Mariah Schrum, Amanda Canezin, Sumana Chakravarty, Michelle Laskowski, Suat Coemert, Yunuscan Sevimli, Greg Chirikjian, Stephen L. Hoffman, and Russell H. Taylor. Unpublished.
- Phase II Mosquito Microdissection SBIR Grant Submission. Greg Chirikjian, Iulian Iordachita, Russell H. Taylor. *Unpublished & Confidential.*
- "Mosquito Staging Apparatus Design for producing PfSPZ-based Malaria Vaccines" Mengdi Xu, Shengnan Lu, Yingtian Xu, Can Kocabalkanli, Jing Jia, Brian Chirikjian, John Chirikjian, Joshua Davis, Jin Seob Kim, Sumana Chakravarty, Iulian Iordachita, Russell Taylor, Gregory Chirikjian. Unpublished & Confidential.

