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Abstract 
 

Needles are used in many surgical procedures such as drug delivery or needle biopsies. One of the key 
challenges when using needles in these interventions is the placement of the needle. Placement of the 
needle at the goal position will ensure proper execution of the surgical plan as well as avoid possible 
complications. This work explores tracking a needle with a piezoelectric sensor embedded at its tip with 
an ultrasound transducer and a mono-camera. While each of the ultrasound transducer and the mono-
camera sensors are insufficient on their own, one can uniquely locate the position of the piezoelectric 
sensor by combining these two sources of sensor information together. The information from each sensor 
can be processed to determine a geometrical locus on which the piezoelectric sensor must lie. By spatially 
combining the geometrical loci from the two sensors using an ultrasound calibration process, one can 
uniquely determine the location of the piezoelectric sensor. An experiment in a water tank was conducted 
with the computed results compared to ground truth cartesian stage data. An in-plane accuracy measure 
resulted in errors of 0.63mm and 0.18mm. The relative accuracy measure had a minimum, maximum, 
mean, and standard deviation of 0.02mm, 2.15mm, 0.61mm, and 0.61mm respectively. Future work will 
focus on demonstrating this method in more realistic ex vivo scenarios and explore whether our listed 
assumptions hold. 

 
1. Introduction 

 
Needles are used in many surgical procedures such as drug delivery or needle biopsies. One of the key 
challenges when using needles in these interventions is the placement of the needle. Placement of the 
needle at the goal position will ensure proper execution of the surgical plan as well as avoid possible 
complications. 
 
The tracking of needles, will generally make use of external tracking sensors such as optical tracking or 
electromagnetic (EM) sensing [1] to provide real time spatial information of the tool relative to the patient. 
Optical tracking systems require line of sight, while EM-based systems are wired and subject to EM field 
distortions, discouraging the use of metallic tools. In addition, the estimation of the tool tips is limited by 
tool shaft bending and the effects of angle estimation error if the sensors themselves are placed far away 
from the tip. Further, IOUS to camera or IOUS to tool tracking transformations necessarily require an 
indirect calculation based on a chain of spatial transformations, each with errors that may propagate to the 
next. The tools themselves are also often difficult to visualize within an IOUS image. Stoll et al. [2] 
attached passive markers on the surgical instrument such that its position and orientation could be 

Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, edited by 
Baowei Fei, Robert J. Webster III, Proc. of SPIE Vol. 10576, 105762I · © 2018 SPIE  

CCC code: 1605-7422/18/$18 · doi: 10.1117/12.2297644

Proc. of SPIE Vol. 10576  105762I-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

determined from an ultrasound image. Okazawa et al. and Cheung et al. explored image processing [3] 
and beamforming approaches [4] to enhance tool visibility. 
 
This work explores the use of a needle with a piezoelectric (PZT) sensor embedded at its tip. Like the 
work presented by Guo et al. [5], this can aid in visualization and detection of the needle tip within an 
ultrasound image. This sensor is insufficient for three-dimensional tracking by itself. Thus, a mono-
camera is attached to the ultrasound transducer. On its own, it is also insufficient, but we show in this 
work how one can combine these two sources of sensor information to enable three-dimensional tracking 
of the needle tip. 

2. Technical Approach 

2.1 Mono-camera needle segmentation and processing 

Needle segmentation from camera images is required to obtain half of the necessary information to 
localize the needle tip. The needle appears as a line in the camera image. Since we are working with a 
single camera, the location of this needle is under-determined. The three-dimensional physical location of 
each image point observed by a single camera can be modeled as a line extending from the camera's 
optical center through this point in the image with depth uncertainty. Thus, if we extend this to every 
point on the needle, we end up with a plane spanning each of these lines on which the needle must lie on 
in three-dimensional space. 
 
To segment the needle, we use a three-step approach. First, we apply an intensity filter across the image 
to reduce the background of the image. Then, we apply a Hough transform [6] to determine the locations 
of lines within the image. Finally, we apply a line length filter to only keep the longest, most well-defined 
set of lines. These set of lines typically include either edge of the needle and can then be averaged 
together to obtain the needle centerline. We can then determine the plane on which the needle lies on by 
picking any two points, ݌ଵ and ݌ଶ, on the segmented needle centerline. Referring to equation 1 where ݋ is 
the camera's optical center, we can define the plane by its normal, ܰ, and vector, ݒ. This plane will be 
used later when we fuse it with the ultrasound information to obtain the needle tip position. 
 ܰ = ሺ݌ଵ − ଶ݌ሺݔሻ݋ − ݒ ሻ݋ = ଵ݌ −  (1)      ݋

2.2 Ultrasound signal segmentation and processing 

The piezoelectric element acts as an active acoustic source and we model it as an ideal point source. One 
important note is that active point sources can be observed in the ultrasound image even if it is outside of 
the imaging plane. Active point sources are generally straight-forward to segment from ultrasound images 
because they either have higher intensity than the background or the ultrasound system can be configured 
such that there is no acoustic transmission and hence no background. In this case, we use an intensity 
filter to determine the location of the active point as observed in the ultrasound image. 
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5. Discussion 
 

While the results from the experiments are promising, there are several extensions that must be made to 
improve the practicality of this method. First of all, these experiments were performed with a fabricated tool 
and not a real needle. Changing to a needle will require development to the camera segmentation methods. 
This method also relies on a strong assumption that there is no needle bending, at least not outside of the 
camera-needle plane. Any needle bending will result in errors to the needle tip estimation. This assumption is 
unlikely to hold, especially when the needle punctures tissue. One possible solution to this may to be add 
additional PZT sensors to the needle shaft to reduce the uncertainty of the needle’s trajectory within the tissue. 
 
6. Conclusion 

 
In this work, we demonstrated the use of sensor fusion to track a piezoelectric element with two incomplete 
sources of sensor information. Through experiments performed in an ideal environment, on average, sub-
millimeter errors were achieved. Future work will focus on demonstrating this method in more realistic ex 
vivo scenarios and explore whether our listed assumptions hold. 
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