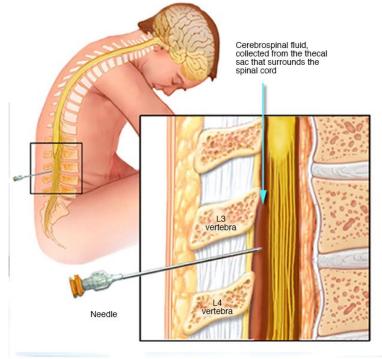


PROGRESS PRESENTATION


Echospine: Developing an Ultrasound Assisted Lumbar Puncture Device April 26, 2019

Team 2: Keshuai Xu, Christian Hernandez Mentor: Emad M. Boctor, PhD;

Build a hands-free patch to guide lumbar puncture with ultrasound imaging so the clinician can

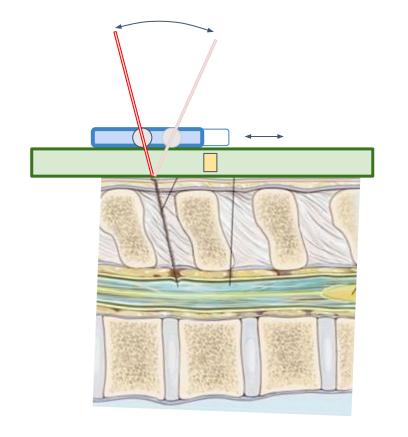
- Find where and what angle to insert the needle
- See where the needle is as it goes in

[@] MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

minimum:

- (in progress) mechanical "ultrasound rails" and the needle guide prototype
 - Subtask 1 (met) Part selection: linear motion and sensing
 - Subtask 2 (partial) Construct rail system
 - Subtask 3 (unmet) Combine probe and needle system
- (in progress) An image acquired from the spine phantom with "ultrasound rails"
 - Subtask 1 (met) Build prototype: 3D-printer + Verasonics
 - Subtask 2 (unmet) Combine Ultrasound Probe with rail construction

expected:

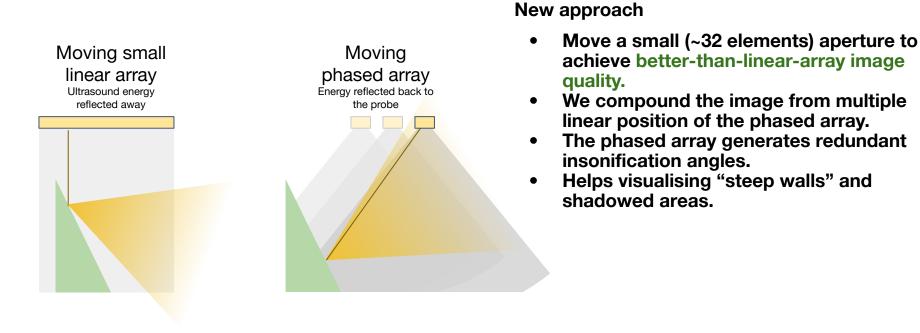

- (in progress) demo imaging a spine phantom and inserting a needle
 - Subtask 1 (partial) Develop needle localization algorithm
 - Subtask 2 (unmet) Image with our hardware prototype

maximum:

- (in progress) design and fabricate a FPGA-based ultrasound transmit+receive electronics
 - Subtask 1 (met) Architecture + Part selection
 - Subtask 2 (met) EDA Schematic
 - Subtask 3 (partial) Software + firmware
 - Subtask 4 (unmet) EDA Layout
 - Subtask 5 (unmet) Assembly

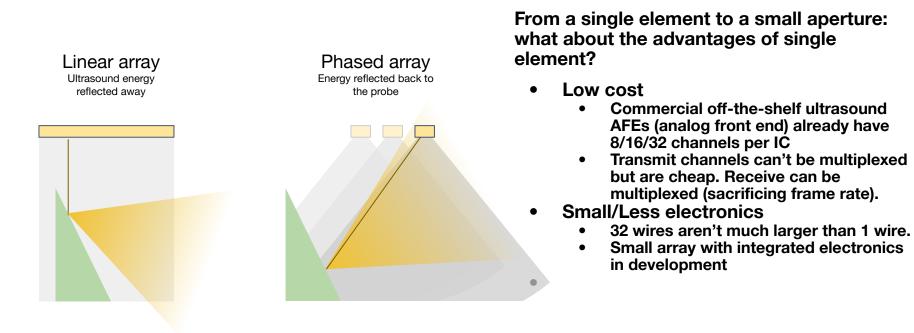
Original approach

Original approach

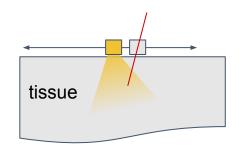

- Move a single element to mimic a linear array to image the spine.
- Why single element? Small, less wires, less electronics, cheap.

Problems

- The linear array we are trying to mimic is suboptimal for this task (next slide)
- Unfocused element produces bad image. Focused element cannot adapt to varying tissue depth.
- Custom probe fabrication timeline extends past end of semester.

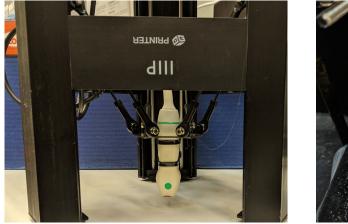

Change in execution

Change in execution


Where do we get the transducer?

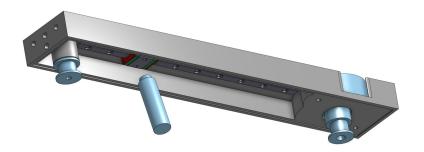
- Use an ATL P7-4 64-element phased array probe for proof-of-concept
- We can potentially get an array in the desired form factor from Analog Devices in the future

Challenges

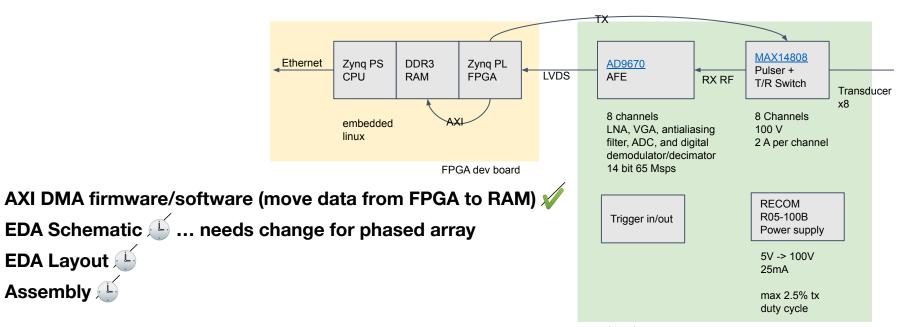

- Can't see needle out of plane
 - Commercial phased arrays are designed to have excellent elevational focusing. Good for image quality. Bad for seeing out-of-plane targets.
 - Solution 1: Small elev. dimension custom array with less elev. focusing
 - Long wait.
 - Solution 2: Co-plane probe placement
 - Similar to biopsy probe needle guide, but clinician does not hold the probe and probe gets out of the way.

Progress - Probe-on-3d-printer experiment

- Moves probe translational 3-DOF 💉 Acquires B-mode frames with Verasonics 🕒 •

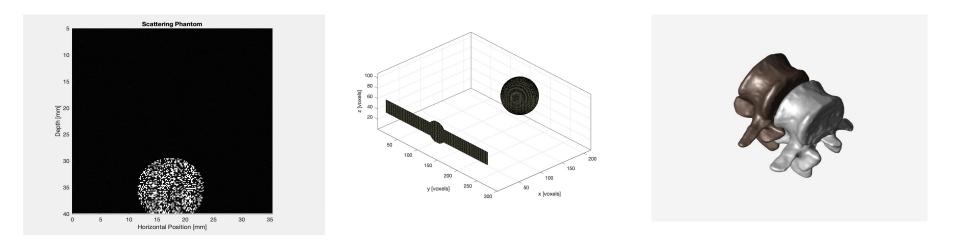


Progress - Imaging rails


We don't hold a single element anymore.

Needs redesign to hold a P7-4 probe and add a carriage for co-plane needle guide.

Progress - custom tx/rx board



custom board

Progress - K-Wave Simulation

Updated Dependencies

Level of Deliverable Affected	Dependency	Proposed Solution	Important Dates	Alternatives	Status
Minimum	Parts for linear motion	Construct with components from vendors	Need by 3/29/2019	Adapt existing tools from the lab space	Resolved
Minimum	Ultrasound Transducers	Provision by MUSiiC lab	Need by 2/21/2019	Purchase through external company	Resolved
Minimum	Verasonics	Provision by MUSiiC lab	Need by 2/21/2019	Develop internally	Resolved
Maximum	Needle and tip element	Purchase components	Need by 2/21/2019	Use probe tool for insertion	Resolved
Maximum	Needle position tracking using ultrasound methods	Purchase components	Need by 4/25/2019	Develop photoacoustic method	Resolved
Maximum (cancelled)	Animal Protocol Approval		Need by 4/25/2019	Continue work with phantom	Resolved

Old Schedule

	February			March			April			Мау						
Preliminary Research / Paper Reading																
Mentor Meeting / Project Presentation																
Probe Selection																
Rail Construction																
Output Ultrasound Patterns																
Produce B-Mode on Rails																
Run Simulations																
Photoacoustic Needle Tracking																
Needle Insertion into phantom																
Live Animal Testing																
Documentation																15

New Schedule

	Aŗ	Мау					
Run Simulations							
Probe Selection							
Learn Verasonics							
Moving phased array experiment							
Prototype for needle+phased array							
Photoacoustic Needle Tracking							
Needle Insertion into phantom							
Documentation							

minimum:

• image+code+doc - A pair of B-mode image comparing image quality of linear scan and our new phased array synthetic aperture scan on a spine phantom

expected:

- video+code+doc A video showing inserting a needle into tissue phantom (no bones) while maintaining its visibility all time.
- code+doc Adaptive compounding algorithm that maximizes information from vertebrae maximum:
 - video A video showing needle insertion in spine phantom with hands-free ultrasound guidance
 - code+doc Acoustic needle localization simulation
 - image Deep tissue photoacoustic imaging

Updated Milestones

Compare image quality of linear scan and our new phased array synthetic aperture scan on a spine phantom

Run the simulation code on the CAD of the spine phantom in K-Wave

Acoustic needle localization

Deep tissue imaging with photoacoustics

Assemble a co-plane needle/probe rail device

 \rightarrow May 1, 2019

 \rightarrow April 22, 2019

 \rightarrow April 20, 2019

 \rightarrow April 25, 2019

Questions?