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Motivation

* Many anatomies are fragile and close to surgical field during
operation. Therefore, we want to propose a virtual fixture (VF)
guided paradigm to extend the surgeon's capabilities during robotic-
assisted surgeries.
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Background

* Retinal detachment is a vision threatening condition. Success following surgical repair depends
on a myriad of factors, including the duration of detachment [1].

* Probe-based confocal laser endomicroscopy (pCLE) enables real-time imaging and in-vivo
characterization of tissues at the cellular level for enhanced diagnosis [2][3].

* pCLE is, however, limited by its field-of-view and micron-scale optimal range of focus (Fig. 1),
making manual image acquisition extremely challenging due to physiological hand tremors

Fig. 1. Sample pCLE views. (a) Out-of-range, 2.34mm probe-tissue distance; (b) Back-focus, 1.16mm probe-tissue
distance; (c) In-focus, 0.69mm probe-tissue distance; (d) Front-focus view, probe fully in contact with the tissue
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Background (Cont.)

e A shared-control framework is proposed for semi-autonomous
endomicroscopy scanning.

* User study video

ﬁr Computatonsl $ Video 1, Cooperative Video 2, semi-autonomous
ERC-CISST
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System Design

* Image quality can be quantitatively

measured by Crete-Roffet (CR) 0.8
score [5] f
: 0.6
e Gradient-based search o T2
T, <CR =2 out-of-range focus; E 0.4
surgeon can control the depth. 5
« T, <CR<T,-> astochasticgradient 02
ascent approach is used by taking Tl
into account the past states of the . — s
image scores and the robot motion. 0

12 10 8 6 - 2
Probe-to-Tissue Distance (mm)

T, <CR -2 the optimal view has

reached; axial motion is stopped.
Fig. 2. CR score with respect to the probe-to-

: $ tissue distance.
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System Design (Cont.)

* Hybrid Cooperative Control — Mid-level Controller
Xdes = chdes,c"'Kaxdes,a

* Hybrid Cooperative Control - Block Diagram
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Fig. 3. General schematic of the proposed hybrid control strategy
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User Study Result

e 9 subjects participated in the study

Surgical
microscope

Confocal
microscopy
system

NN

ﬁ? R $ Fig. 4. Experimental setup showing the confocal endomicroscopy system,
bl FRC-cssT steady-hand eye robot, surgical microscope, and an artificial eye phantom.
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User Study Result

e Semi-autonomous framework improved in CR score, Duration of In-
focus View and Motion Smoothness (MS)
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Fig. 5. Results of the user study
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Background

* A mastoidectomy is a surgical procedure that removes diseased
mastoid air cells, which can be used to remove infected air cells, and
drain middle ear ~

* However, underlying anatomy is fragile,
such as the facial nerve

o Fig 6. An overview of mastoidectomy
Sf ggrl:;li]r:ga:jRngg:)ﬁcs $ERC-C]SST procedure (Source Ilnk) 12
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https://www.google.com/search?q=mastoidectomy&rlz=1C1CHBF_enCA808CA808&tbm=isch&source=iu&ictx=1&fir=ZuEYnixx6yS4KM%253A%252CxfsjhTrrC8PWVM%252C%252Fm%252F0k28y7b&vet=1&usg=AI4_-kR4Y6bPGzu8sU0KK_ZzG5Ux7eeEEQ&sa=X&ved=2ahUKEwjhhtb93KLhAhVCheAKHXoIA2EQ9QEwAHoECAwQBg&cshid=1553703648272815

Background (Cont.)

* Galen Mark | design

e Parallel link robot
* 5DOF
e Stable force sensor

* Current FK computation

* Currently uses a polynomial approximation for Forward Kinematics
calculations

e Current Jacobian computation
e Currently calculates the inverse of the inverse Jacobian
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Project goals

* Implement simple and complex virtual fixtures for hand-over-hand
control of the Galen Mark | surgical robot.
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Designh Approach

e Correct Jacobian and Forward Kinematics of the Galen Robot

* Implement simple virtual fixtures like plane constraints using the
already developed constraint optimization solver

* Prototype logic for implementing complex virtual fixtures like 3D
surfaces of known geometry, where the surface equation might not
be known

* Test complex virtual fixtures

* |lterate and improve
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e

Design Approach (simple fixtures)

* Use known constraints for simple virtual fixtures [8],[9]
e Plane: i X — n.p >0

¢ Path FO”OWing: mindq”(]T * dq — (Grrans * Trans((Goren * AXoren + Gadj * dxadj)) + grot * Rot(dxp))|| .

* AXis: ming,|| Ju *dq — dxps || ?

Computatmnai LCSR, Johns Hpkins University
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e

Design Approach (surface fixture)

e Approach 1
* Break the surface into multiple planes, and utilize the
plane constraint optimizer, dynamically shifting
between different planes.

° Approach 2 Fig 7. Surface modelling

* Fit a polynomial through the surface and have the high-level controller
compute the distance of the tool tip to the surface itself.

* This distance can then be written in the form of an objective function that the
mid-level controller can optimize

Computatmnai $ LCSR, Johns Hpkins University 17
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Deliverables

* Minimum
* Framework for simple virtual fixtures. Fixtures would be
* Plane constraints
e Path following
* Insertion along an axis

* Expected

* Framework for more complex virtual fixtures like constraints for 3D surfaces

* Framework for automated switching of modes from virtual fixtures to free
motion depending on location of tool tip

* Maximum
* Framework to compute virtual fixture constraints based on CT scan data
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Responsibilities and Management Plan

* Since most of the project relies on coding, both team members can
work together on different parts. But based on expertise and preference,
the tasks were divided as follows.

* Max

* Forward Kinematics validation

e Simple virtual fixture implementation
* Anurag

* Jacobian correction

» Surface constraint logic

* Management plan:
* Code will be stored on BitBucket
* Documentation will be prepared separately on OneDrive
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Milestones

Jacobianand FK correction Apr1l Incomplete
Simple Virtual Fixture Apr7 Incomplete
implementation

Surface virtual fixture Logic Apr12 Incomplete
Surface virtual fixture Apr 20 Incomplete

implementation
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Dependencies

Dependency Plan to resolve Estimated resolution date

Access to Galen Mark | Schedule with Dr. Taylor Resolved

Access to CT (if necessary) Coordinate with Dr. Taylor April 15

Access to phantom skull (if

Coordinate with Dr. Taylor April 15
necessary)
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