Seminar Presentation

Adam Polevoy

Tool Gravity Compensation for the Galen Microsurgical System

The objective of this project is to:

- Develop models of tool gravity in static and dynamic modes
- Integrate the model into the control loop of the Galen robot to compensate for tool's gravity and dynamics
- Identify the deflection model of the Galen's arm in the presence of the operator's hand force

Paper selection

- Learning optimal variable admittance control for rotational motion in human-robot co-manipulation.
 - Dimeas, Fotios & Aspragathos, Nikos. (2015). Learning optimal variable admittance control for rotational motion in human-robot co-manipulation. IFAC-PapersOnLine. 48. 10.1016/j.ifacol.2015.12.021.

Why:

- Tool gravity compensation
- Variable admittance control

Summary of problem & key result

Problem

- Virtual damping, a key component in admittance control
 - \circ Low damping \rightarrow less resistance, fine positioning is reduced
 - High damping \rightarrow fine positioning is increased, more resistance
- Variable damping can improve performance of the cooperative control framework
- Goal: Implement variable admittance control with a systematic approach

Summary of problem & key result

Key Results

- Implemented variable admittance control using a Fuzzy Model Reference Learning Controller (FMRLC)
- Allowed users to cooperate with a robot in a simple rotation task with significantly less energy exertion, in less time, and with less overshoot

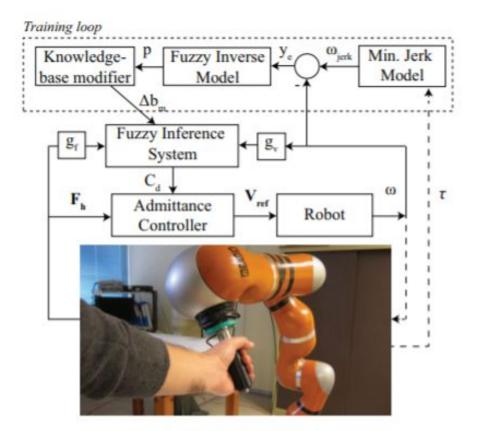
Significance of key result

- Presents a systematic approach to tune variable admittance control
 - Much of the prior literature tunes parameters using trial and error
- Presents an approach to regulate variable admittance control for rotation tasks
 - Most literature approaches variable admittance control for pure translation tasks

Necessary background

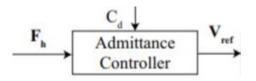
- Prior work by these authors for pure translation variable admittance control
 - Dimeas, F. and Aspragathos, N. (2014). Fuzzy Learning Variable Admittance Control for Human-Robot Cooperation. In IEEE International Conference on Intelligent Robots and Systems, 4770–4775. September 13-18, Chicago, IL, USA.
- Mathematics behind the minimum jerk trajectory model
 - Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.
- Knowledge of fuzzy control and FMRLCs
 - Passino, K.M. and Yurkovich, S. (1997). Fuzzy Control. Addison Wesley Publishing Company, California.

Technical Approach



Dimeas, Fotios & Aspragathos, Nikos. (2015)

Admittance Controller



• Goal: Impose desired velocities on end effector as a function of applied force

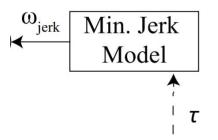
- F_h = input forces / torques
- V_{ref} = output velocities
- q'_{ref} = joint velocities
- M_d = virtual inertia
- $C_d = virtual damping/viscosity$

$$\mathbf{M_d} \mathbf{\dot{V}_{ref}} + \mathbf{C_d} \mathbf{V_{ref}} = \mathbf{F_h}$$

 $\begin{aligned} \mathbf{V_{ref}} &= \begin{bmatrix} \dot{\mathbf{p}}_r \\ \boldsymbol{\omega}_r \end{bmatrix} \in \mathbb{R}^3, \text{ translational velocities} \\ \mathbf{F_h} &= \begin{bmatrix} \mathbf{f}_h \\ \boldsymbol{\tau}_h \end{bmatrix} \in \mathbb{R}^3, \text{ forces} \\ \in \mathbb{R}^3, \text{ torques} \end{aligned}$

$$\dot{\mathbf{q}}_{\mathbf{ref}} = \mathbf{J}^{-1}(\mathbf{q})\mathbf{V}_{\mathbf{ref}}$$

Minimum Jerk Model



• During rotations, the trajectory followed by the human hand has minimal change in angular acceleration, and can be described by θ_{ierk}

$$\begin{aligned} \theta_{jerk}(\hat{t}) &= \theta_0 + (\theta_f - \theta_0)(6\hat{t}^5 - 15\hat{t}^4 + 10\hat{t}^3) \\ \omega_{jerk}(\hat{t}) &= \theta_f(30\hat{t}^4 - 60\hat{t}^3 + 30\hat{t}^2) \end{aligned}$$

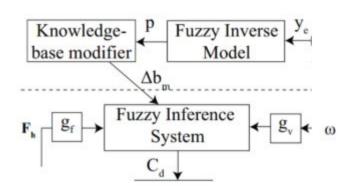
• t_f is the duration of the motion, $t^* = t/t_f$, $\theta_0 = 0$ is the initial angle, and θ_f is the final angle.

$$y_e = \omega_{jerk} - \omega$$

Dimeas, Fotios & Aspragathos, Nikos. (2015)

Flash, T. and Hogan, N. (1985).

Fuzzy Model Reference Learning Controller



Initial Fuzzy Inference System rule-base: Cd: 1 to 5 (low to high) Fh & ω: -2 to 2 (neg high to pos high)

Triangular shaped membership functions

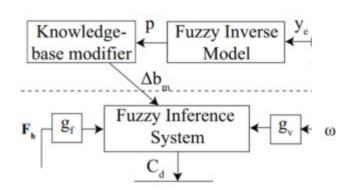
 F_h = input forces / torques ω = angular velocity C_d = virtual damping

Cd		F_h				
		-2	-1	0	1	2
ω	-2	1	2	3	5	5
	-1	2	3	4	5	5
	0	3	4	5	4	3
	1	5	5	4	3	2
	2	5	5	3	2	1

Dimeas, Fotios & Aspragathos, Nikos. (2015)

Dimeas, F. and Aspragathos, N. (2014).

Fuzzy Model Reference Learning Controller

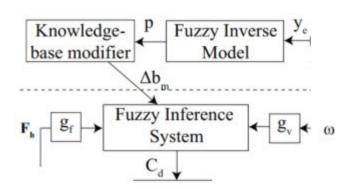


Fuzzy Inverse Model rule-base:

IF y_e is zero THEN p is zero. IF y_e is positive THEN p is negative. IF y_e is negative THEN p is positive.

$$y_e = \omega_{jerk} - \omega$$

Fuzzy Model Reference Learning Controller

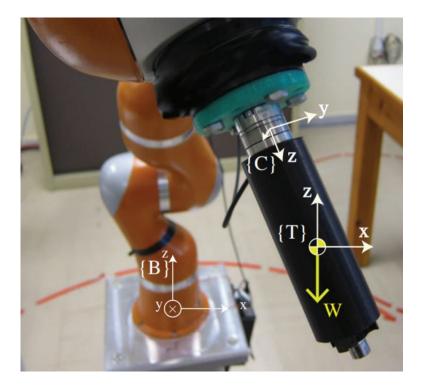


Knowledge-base modifier:

 $\Delta b_m(kT) = p\mu_m(\tau_h(kT - T), \omega(kT - T))$

- The functions μ_m describes the certainty that a rule applies
- The function Δb_m describes how much to shift the output membership function

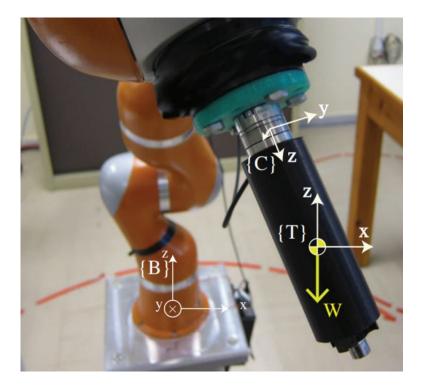
Tool weight compensation



Transform forces and torques in tool frame to force sensor frame:

$$\mathbf{W} = \begin{bmatrix} \mathbf{f}_W \\ \boldsymbol{\tau}_W \end{bmatrix} \in \mathbb{R}^3, \text{ forces} \\ \in \mathbb{R}^3, \text{ torques} \end{bmatrix}$$
$$\mathbf{f}_W = \begin{bmatrix} 0 \ 0 \ -m_t g \end{bmatrix}^T \quad \boldsymbol{\tau}_W = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}^T \\ \begin{bmatrix} \mathbf{f}_W^C \\ \boldsymbol{\tau}_W^C \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{CT} & \mathbf{0} \\ -\mathbf{R}_{CT} \hat{\mathbf{p}}_T & \mathbf{R}_{CT} \end{bmatrix} \begin{bmatrix} \mathbf{f}_W^T \\ \boldsymbol{\tau}_W^T \end{bmatrix}$$

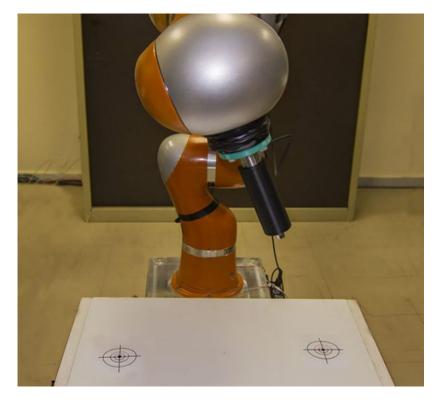
Tool weight compensation



Removing rebiasing weight and tool weight from force sensor readings

$$\begin{aligned} \mathbf{F}_{ext} &= \mathbf{F}_{tot} - \mathbf{F}_{tot}^{init} \\ \mathbf{F}_{tot}^{init} &= \mathbf{F}_{uncal} + \begin{bmatrix} \mathbf{f}_{W,init}^{C} \\ \boldsymbol{\tau}_{W,init}^{C} \end{bmatrix} \\ \mathbf{F}_{tot} &= \mathbf{F}_{\mathbf{h}} + \mathbf{F}_{uncal} + \begin{bmatrix} \mathbf{f}_{W}^{C} \\ \boldsymbol{\tau}_{W}^{C} \end{bmatrix} \\ \mathbf{F}_{\mathbf{h}} &= \mathbf{F}_{ext} - \begin{bmatrix} \mathbf{f}_{W}^{C} \\ \boldsymbol{\tau}_{W}^{C} \end{bmatrix} + \begin{bmatrix} \mathbf{f}_{W,init}^{C} \\ \boldsymbol{\tau}_{W,init}^{C} \end{bmatrix} \end{aligned}$$

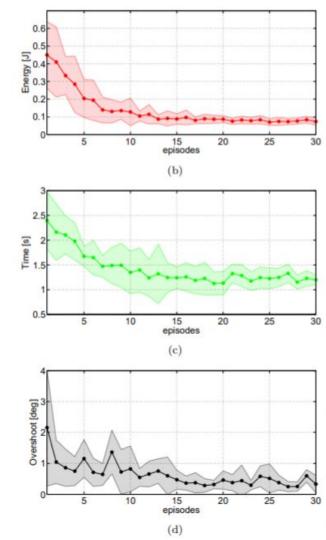
Experimental Evaluation



- A user study involving 7 participants
- Each subject rotated the KUKA LWR robot about the x-axis of frame {C}
 - Laser on end effector which points to goal regions, instructing subjects
 - Two sets of 30 transitions were recorded for each subject
- Output membership functions are initialized evenly distributed between 0 and 10 Nms/rad
- Output membership functions are updated throughout

Experimental Results

- The FMRLC significantly reduced energy exertion, time taken, and overshoot
- It converged to steady values after 10 episodes
- Thus, the FMRLC is more effective and systematic than manually tuned FISs for variable admittance control



Assessment

- Importance
 - Provides systematic approach to tune parameters for variable admittance control
 - Has potential in optimising human-robot cooperation in many settings
- Relevance
 - Provides a solid mathematical background for static gravity compensation and gives insight about adaptive adjustment of admittance gain

Assessment

• Good and Bad Points

Good	Bad		
 Clear justification of FMRLC approach Explicit and helpful mathematics Positive results with clear graphics 	 No explicit validation of weight comp. Experiment only along a single axis No trial of 30 episodes without FMRLC 		

- Further Work Suggestion:
 - Experimental validation of variable admittance control for translation and rotation about many different axes

Conclusion

- Introduced unique way for tuning variable admittance control for simple rotation tasks
- Provides a lot of insightful mathematics for performing variable admittance control and static tool gravity compensation
- The experiment section was lacking without control trials without FMRLC training and without gravity tool compensation validation

Questions

References

- Dimeas, Fotios & Aspragathos, Nikos. (2015). Learning optimal variable admittance control for rotational motion in human-robot co-manipulation. IFAC-PapersOnLine. 48. 10.1016/j.ifacol.2015.12.021.
- Dimeas, F. and Aspragathos, N. (2014). Fuzzy Learning Variable Admittance Control for Human-Robot Cooperation. In IEEE International Conference on Intelligent Robots and Systems, 4770–4775. September 13-18, Chicago, IL, USA.
- Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.
- Passino, K.M. and Yurkovich, S. (1997). Fuzzy Control. Addison Wesley Publishing Company, California.