

Robotic Ultrasound Assistance

via Hand-Over-Hand Control

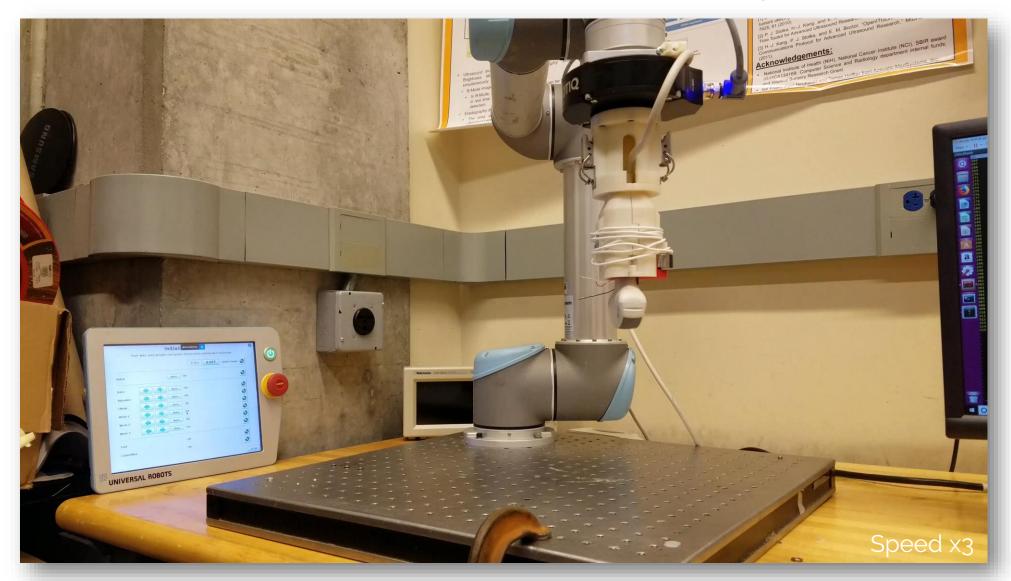
Group 5: Kevin Gilboy

Mentors: Dr. Emad Boctor Dr. Mahya Shahbazi

Summary

• Problem

Sonographers commonly develop work-related musculoskeletal issues [1] by holding probe in static, contorted positions and applying large forces [2]


• Goal

Provide sonographers with a smooth moving, hand-guidable, ultrasound wielding robot to do the strenuous holding for them.

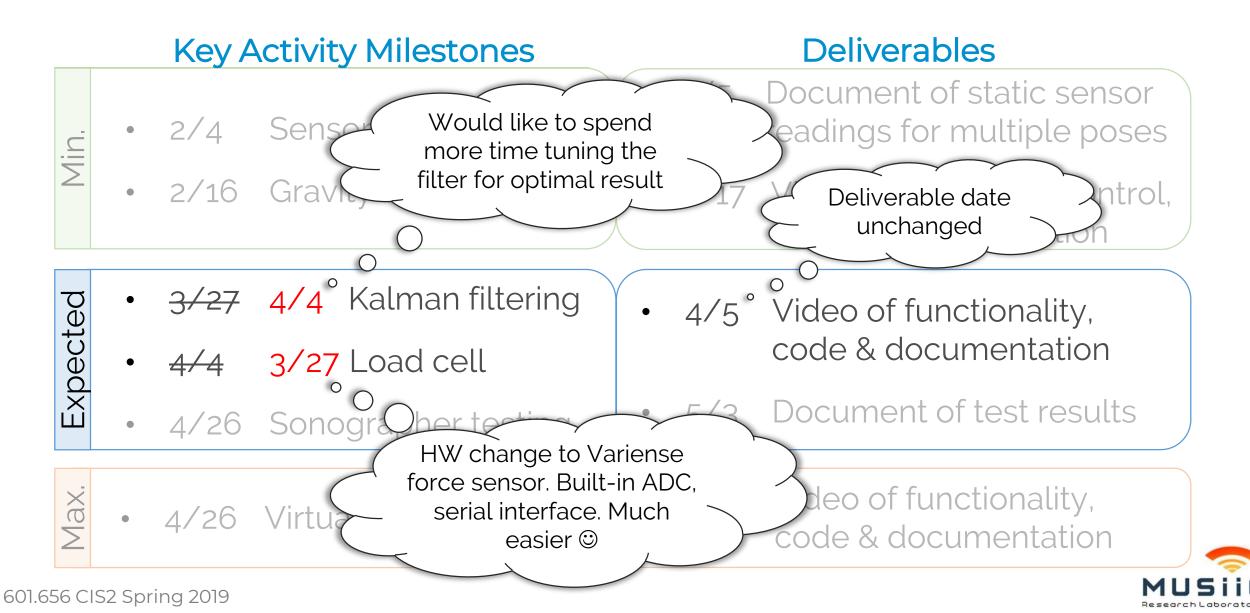
- Status on target!
 - o All activities and deliverables met on time
 - o Minimum goal achieved
 - o One tweak to future milestone date due to HW upgrade, deliverable untouched
 - One unresolved peripheral dependency

Some Proof of Admittance Control, Gravity Compensation

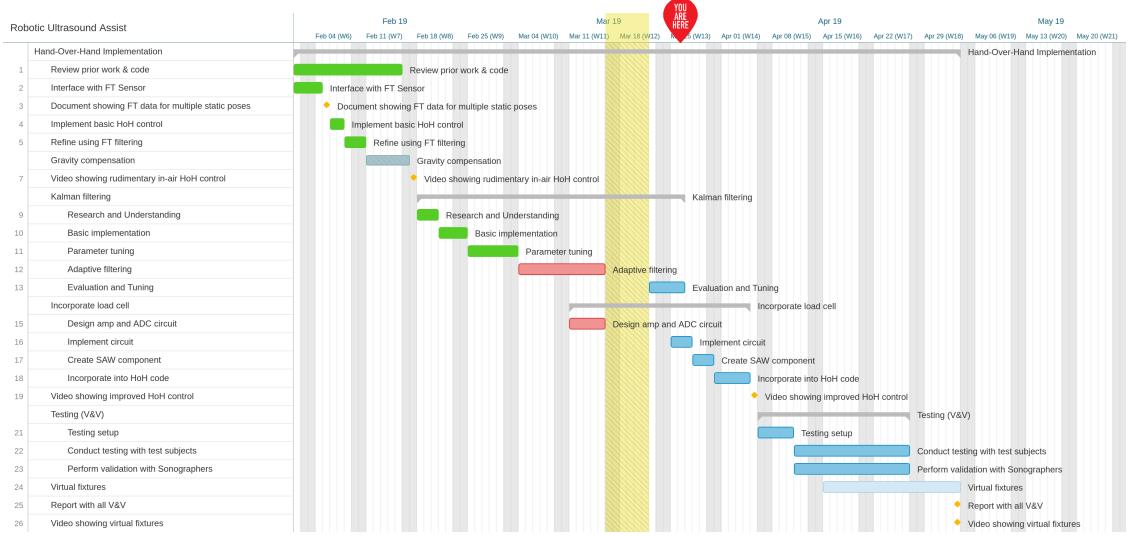
Updates

Update: Key Activities and Deliverables

	Activity	Deliverable
Ċ	C++ interface with robot and dual force sensors to collect data	Datasets for multiple static poses
Min.	Implement rudimentary in-air admittance control, gravity compensation	Video of functionality, graphs showing compensation, code and documentation
Expected	Implement improved admittance control through adaptive Kalman filtering incorporating probe-pt. force feedback	Video of functionality, code and documentation
Exp.	Qualitatively & quantitatively evaluate the system with test subjects	Report with graphs and statistical validation
Max.	Virtual fixtures	Video of functionality, code and documentation

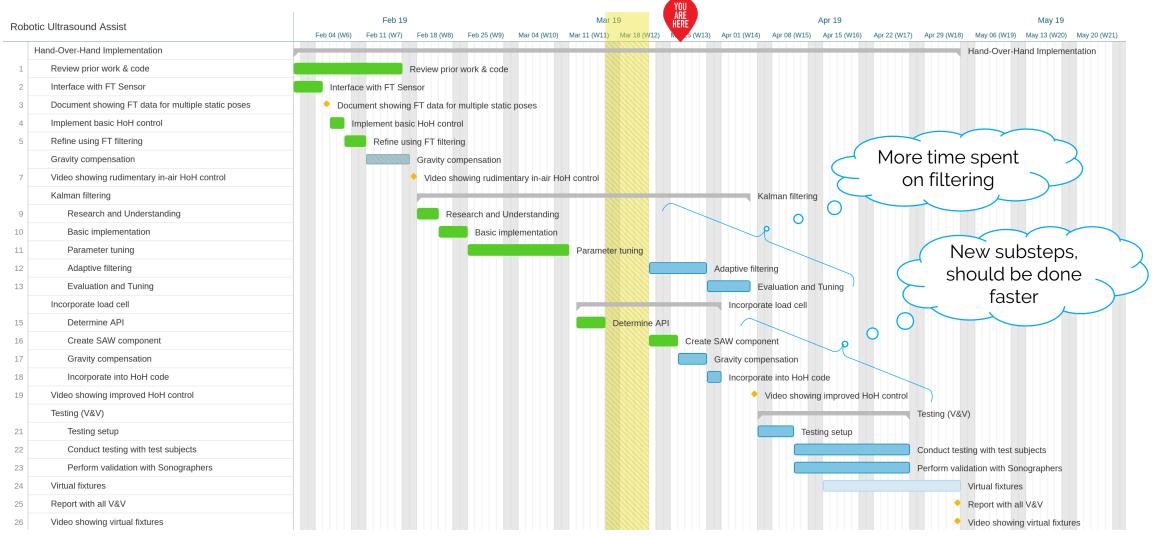

Update: Activity Dates

		Key A	Activity Milestones	Deliverables			
Min.	•	2/4	Sensor interfacing	•	2/5	Document of static sensor readings for multiple poses	
Σ	•	2/16	Gravity compensation	•	2/17	Video of in-air HoH control, code & documentation	
cted			Kalman filtering	•	4/5	Video of functionality, code & documentation	
Expected			Load cell Sonographer testing	•	5/3	Document of test results	
Max.	•	4/26	Virtual fixtures	•	5/3	Video of functionality, code & documentation	


M

ResearchLaboratory

Update: Activity Dates

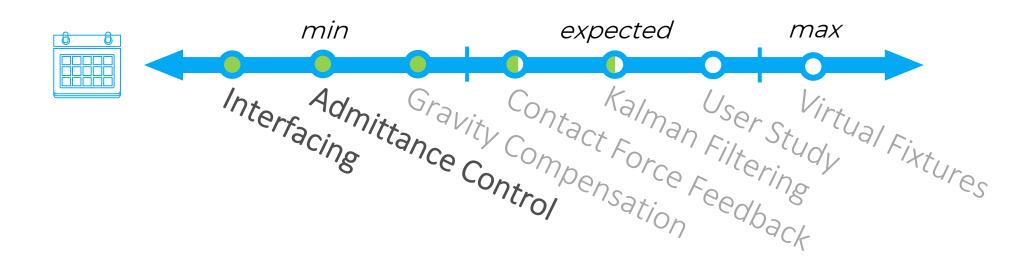


Update: Activity Timeline

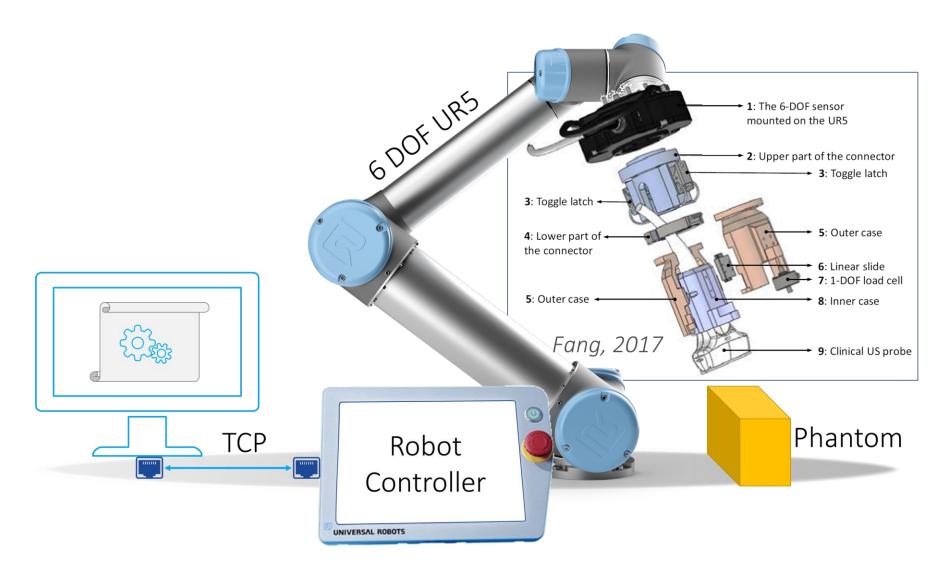
Update: Activity Timeline

Update: Dependencies

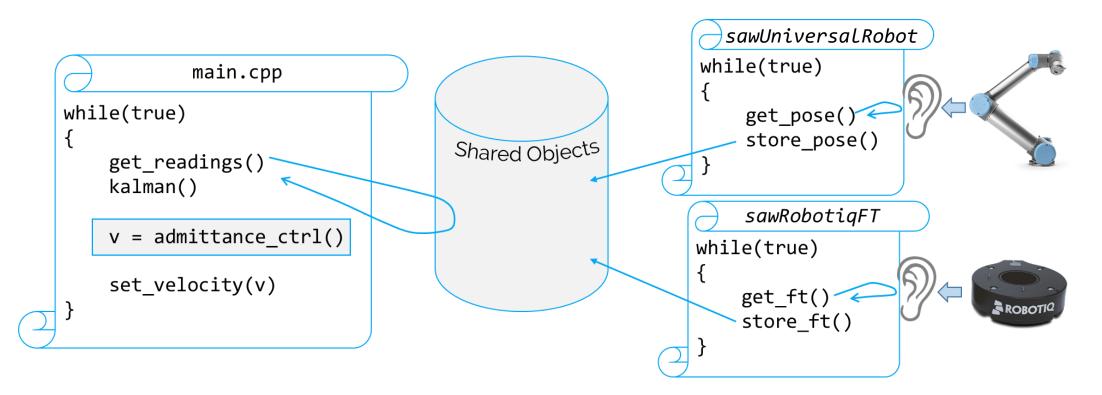
Dependency	Need	Status	Followup	Contingency Plan	Planned Deadline	Hard Deadline	
Robot	Actuated to provide "power- steering"	Have a working UR5	N/A	If breaks, could seek continued permission to use UR3 in B08	2/1	2/1	
6DOF F/T Sensor	Admittance control input	Have a working Robotiq FT-150	N/A	If breaks, approach the CS dept to borrow one of their FT sensors	2/1	2/1	
Load Cell Contact Force Sensor	Decouples force from probe on pt.	Have a working 3DoF Variense FSE103	NZA	If broken, continue with load cell or without contact force feedback	2/12	2/28	1
Ultrasound Probe	Key component for realistic testing	Have a linear probe, several others available in our lab pod	N/A	If disappears, seek permission to use another probe available in lab pod	2/1	4/1	
sEMG sensor	Used to measure physical exertion while scanning	Looking to acquire through MUSiiC Lab collaborators	Speak with Dr. Boctor	If unable to acquire, testing can still proceed without sEMG data	3/8	4/12	N PROGRESS
Phantom (non-anatomical)	Something to test the probe on	Acquired	N/A	If disappears, seek permission to use one of the many phantoms present in B08A	2/1	4/1	1
HIRB Approval First Submission	Testing with subjects	Submitted, trained for human subjects testing, HIPPA	N⁄A	If not approved in time, we can still perform qualitative validation with sonographers to see if exertion is improved in their expert opinion.	2/22	3/1	
HIRB Approval	Testing with subjects	Received brief feedback, crafted an update	Resubmitting today (3/26)	If not approved in time, we can still perform qualitative validation with sonographers to see if exertion is improved in their expert opinion.	3/29	4/12	N PROGRESS


Update: Dependencies

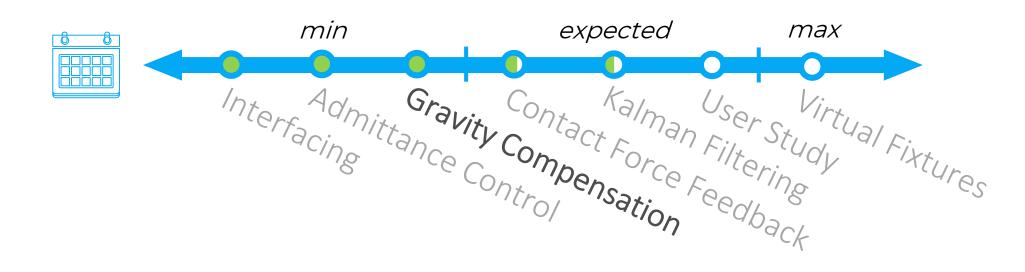
Dependency	Need	Status	Followup	Contingency Plan	Planned Deadline	Hard Deadline	
Robot	Actuated to provide "power- steering"	Have a working UR5	N/A	If breaks, could seek continued permission to use UP	2/	2/1	
6DOF F/T Sensor	Admittance control input	Have a working Robotiq FT-150	N/A	Original 3/15 dead for ordering an s		\sum	
Load Cell Contact Force Sensor	Decouples force from probe on pt.	Have a working 3DoF Variense FSE103	N/A	system. Now we look to find one at JHMI instead		\checkmark	
Ultrasound Probe	Key component for realistic testing	Have a linear probe, several others available in our lab pod	N/A	If disappears, seek permissi on to ase another probe available in lab pod	Ö	4/1	
sEMG sensor	Used to measure physical exertion while scanning	Looking to acquire through MUSiiC Lab collaborators	Speak with Dr. Boctor	If unable to acquire, testing can still proceed without sEMG data	3/8	O 4/12	N PROGRESS
Phantom (non-anatomical)	Something to test the probe on	Acquired	N/A	If disappears, seek permission to use one of the many phantoms present in B08A	2/1	4/1	
HIRB Approval First Submission	Testing with subjects	Submitted, trained for human subjects testing, HIPPA	N/A	If not approved in time, we can still perform qualitative validation with sonographers to see if exertion is improved in their expert opinion.	2/22	3/1	
HIRB Approval	Testing with subjects	Received brief feedback, crafted an update	Resubmitting today (3/26)	If not approved in time, we can still perform qualitative validation with sonographers to see if exertion is improved in their expert opinion.	3/29	4/12	N PROGRESS


Update: Dependencies

Dependency	Need	Status	Followup	Contingency Plan	Planned Deadline	Hard Deadline	
Robot	Actuated to provide "power- steering"	Have a working UR5	N/A	If breaks, could seek continued permission to use UR3 in B08	2/1	2/1	
6DOF F/T Sensor	Admittance control input	Have a working Robotiq FT-150	N/A	If breaks, approach the CS dept to borrow one of their FT sensors	2/1	2/1	
Load Cell Contact Force Sensor	Decouples force from probe on pt.	Have a working 3DoF Variense FSE103	NZA	If broken, continue with load cell or without contact force feedback	2/12	2/28	1
Ultrasound Probe	Key component for realistic testing	Have a linear probe, several others available in our lab pod	N/A	If disappears, seek permission to use another probe available in lab pod	2/1	4/1	
sEMG sensor	Used to measure physical exertion while scanning	Looking to acquire through MUSiiC Lab collaborators	Speak with Dr. Boctor	If unable to acquire, testing can still proceed without sEMG data	3/8	4/12	N PROGRESS
Phantom (non-anatomical)	Something to test the probe on	Acquired	N/A	If disappears, seek permission to use one of the many phantoms present in B08A	2/1	4/1	1
HIRB Approval First Submission	Testing with subjects	Submitted, trained for human subjects testing, HIPPA	N⁄A	If not approved in time, we can still perform qualitative validation with sonographers to see if exertion is improved in their expert opinion.	2/22	3/1	
HIRB Approval	Testing with subjects	Received brief feedback, crafted an update	Resubmitting today (3/26)	If not approved in time, we can still perform qualitative validation with sonographers to see if exertion is improved in their expert opinion.	3/29	4/12	N PROGRESS


Work To Date

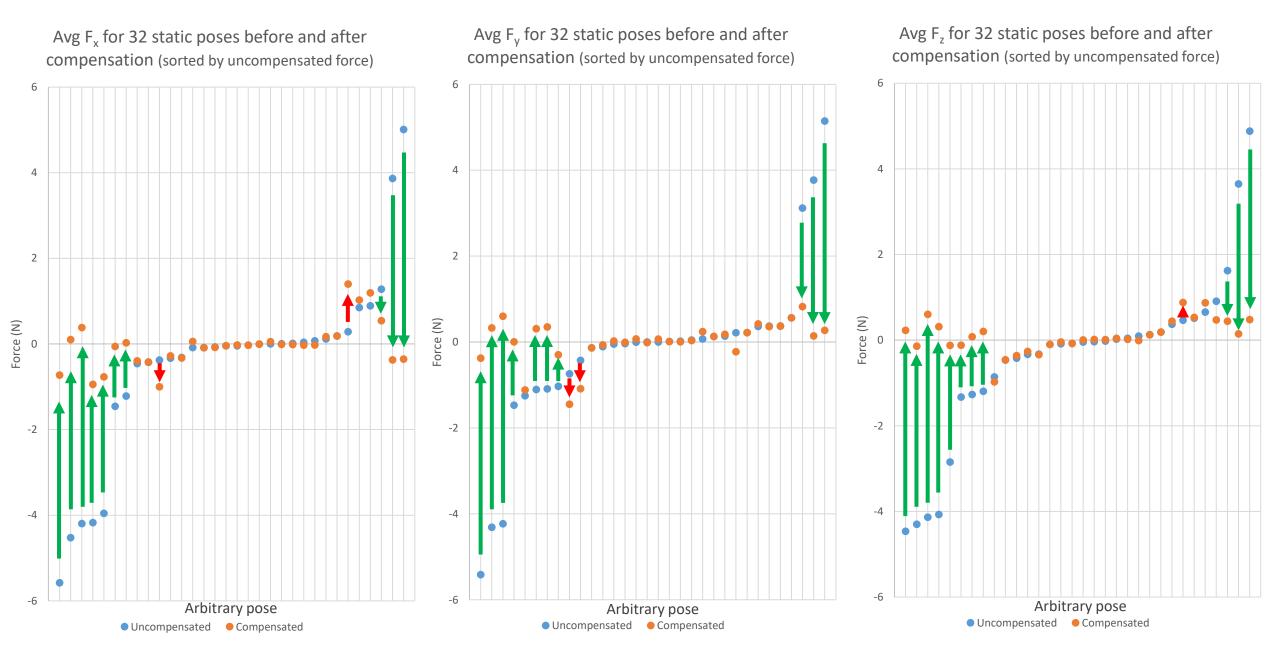
Interfacing and Admittance Control



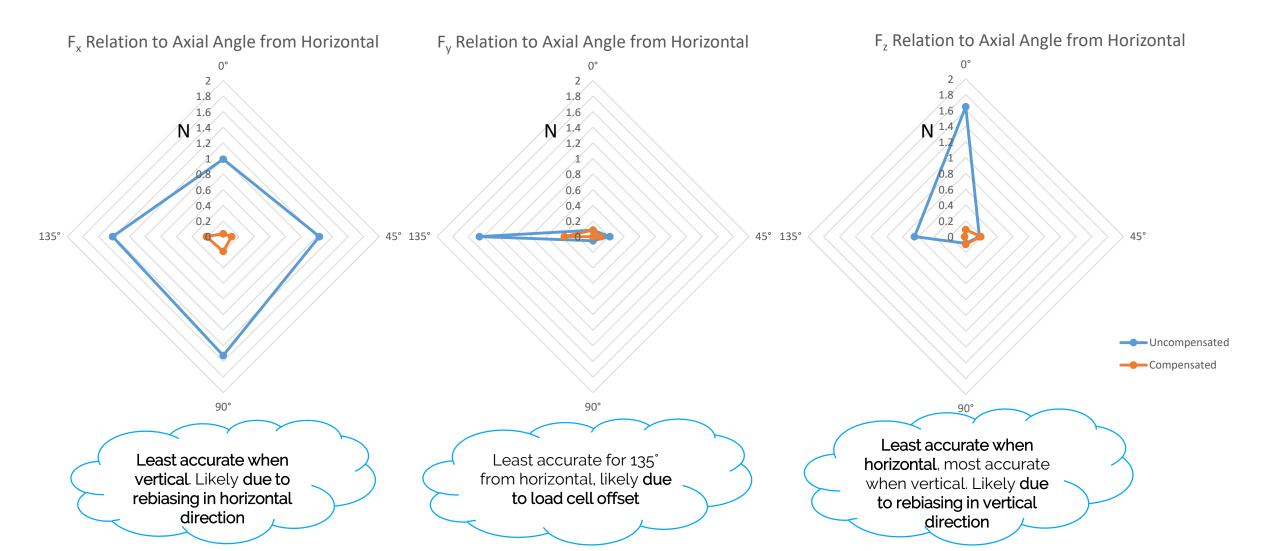
Interfacing and Admittance Control

 $\begin{array}{l} \text{Admittance control} \\ \text{inspired by} \\ \text{Finnochi, 2016} \end{array} \quad \begin{cases} \textit{force2linvel}(f) = (|f| < 0.1)? \ 0 \ : \ 0.325 \ e^{1 - \left(\frac{25}{|f|}\right)} \ * \ sgn(f) \\ \textit{torque2rotvel}(\tau) = (|\tau| < 0.1)? \ 0 \ : \ 0.125 \ e^{1 - \left(\frac{5}{|\tau|}\right)} \ * \ sgn(\tau) \end{cases}$

Work To Date

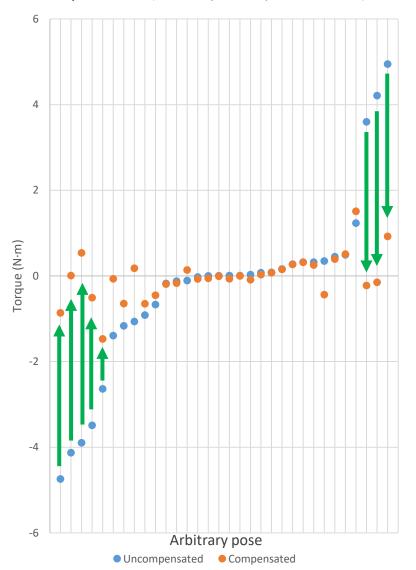

Gravity Compensation – Method

Automated data collection script of 32 static poses Averaged 736 samples per pose

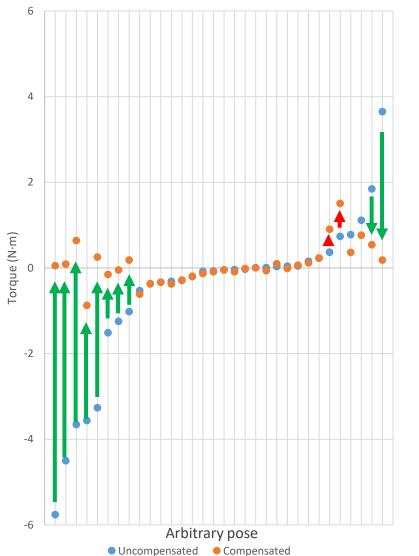

Used least squares to solve for mg mg = 4.7740NUsing this mg, used least squares to solve for p_{EE} $\vec{p}_{EE} = [-0.0132, 0] m$ Makes sense due to -x offset of load cell

 R_{EE}

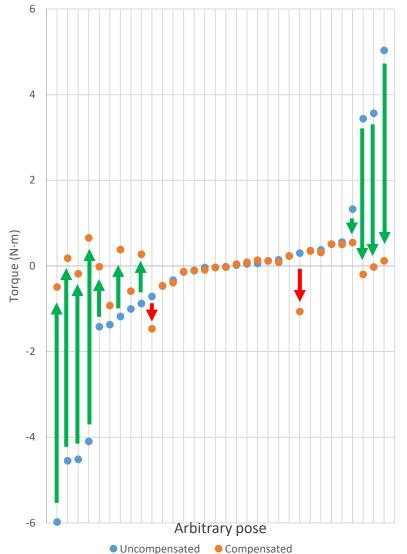
Gravity Compensation – Result for XYZ Forces by Pose

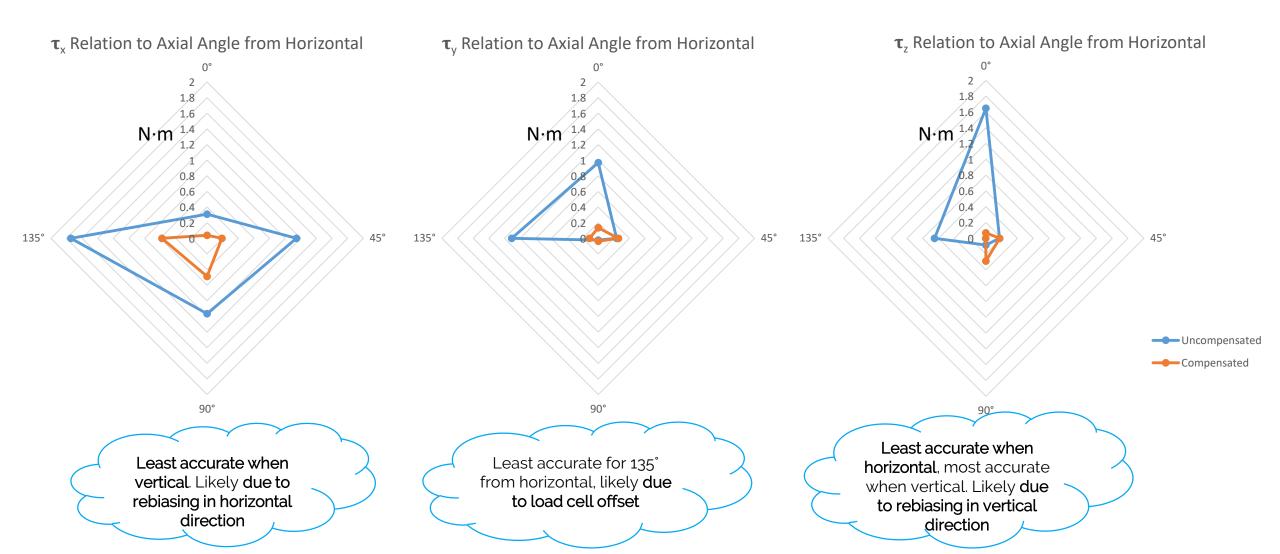


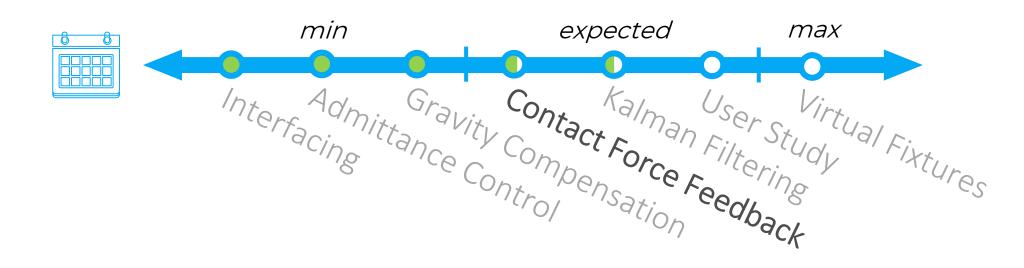
Gravity Compensation – Result for XYZ Forces by Angle



Gravity Compensation – Result for XYZ Torques


Avg τ_x for 32 static poses before and after compensation (sorted by uncompensated force)


Avg τ_y for 32 static poses before and after compensation (sorted by uncompensated force)

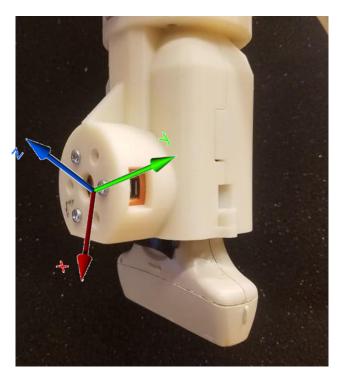

Avg τ_z for 32 static poses before and after compensation (sorted by uncompensated force)

Gravity Compensation – Result for XYZ Torques by Angle

Work To Date

Contact Force Feedback - Decision

Switching from 1DoF load cell to 3DoF axial force sensor



Pros:

- 3 DoF > 1 DoF
- Built-in ADC, amp, serial; no need for PCB
- 80N, 80N, 100N XYZ sensing range
- Sleek housing already built

Cons:

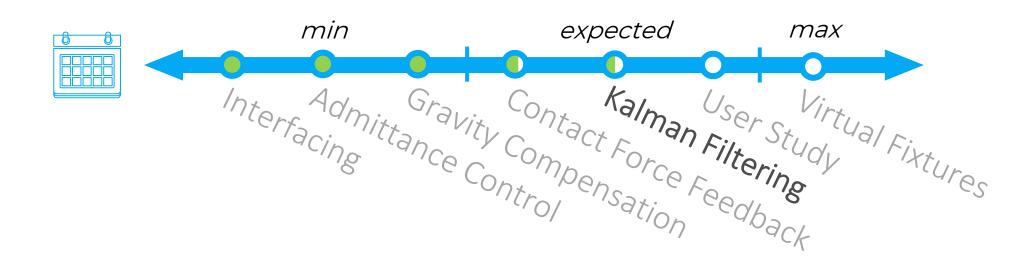
- Housing is "sticky"
- < 1.5N of noise

Contact Force Feedback - Progress

Documented API is all wrong

Progress:

- Identified correct API
- Created sawVarienseFSensor component to read data over serial at 50Hz


Name	Format	Length	Value
Start of message	Char	1 byte	0x0D
Size of message	Char	1 byte	0x14
Type of message	Char	1 byte	0x66
Timestamps ¹	Uint32	4 bytes	(MSB) (LSB)
Force X	Float	4 bytes	(MSB) (LSB)
Force Y	Float	4 bytes	(MSB) (LSB)
Force Z	Float	4 bytes	(MSB) (LSB)
End of message	Char	1 byte	0xFF

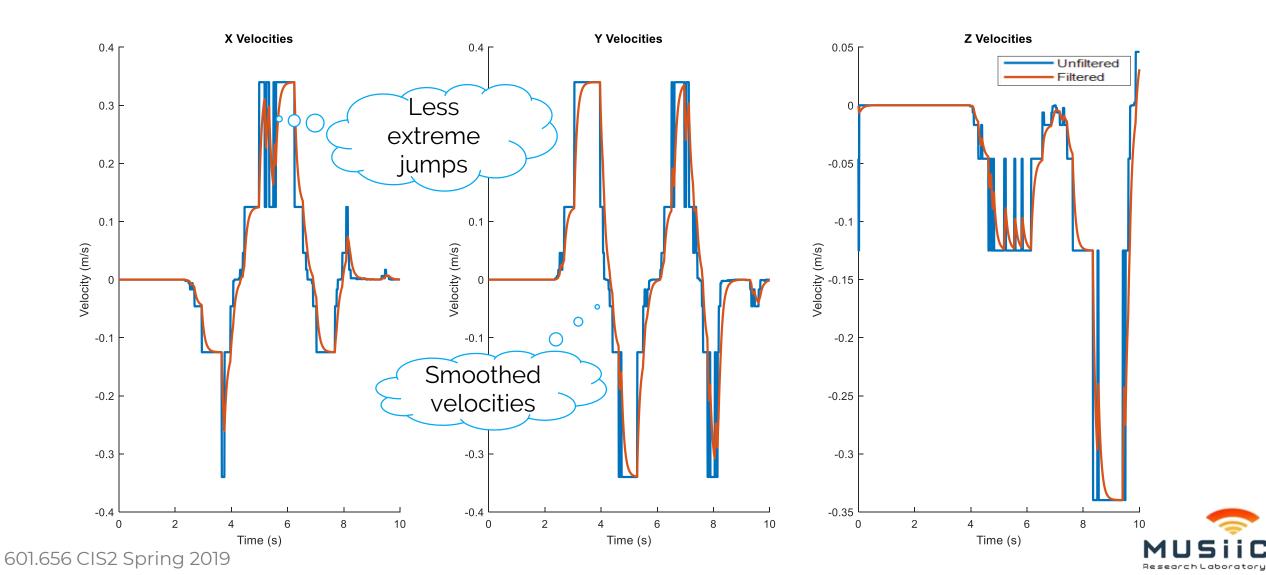
Up Next:

- Determine tool weight contribution via gravity compensation procedure
- Use Kalman filtering to smooth, infer values up to 125Hz
- Perform contact compensation by subtracting from the 6DoF F/T

Work To Date

Kalman Filtering – First Implementation

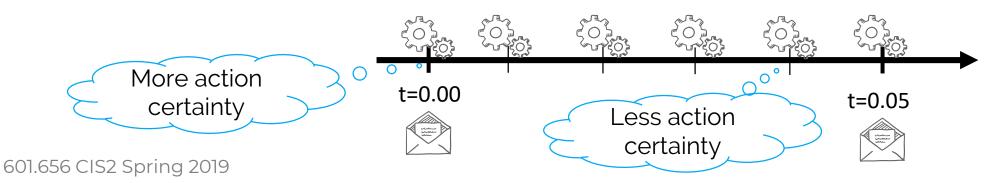
Performed on linear velocities after sigmoidal transformation of $F/T \rightarrow V$ Constant acceleration model (a=1.8)


Static, non-adaptive covariances R, Q (to start) State transition matrix uses dt=0.01s (100Hz)

- Measurement vector $\mathbf{m} \in \mathbb{R}^{6\times 1}$
 - For us is [*V_x*, *V_y*, *V_z*, 1.8,1.8,1.8]
- Sensor noise/confidence $\mathbf{R} \in \mathbb{R}^{6\times 6}$
- Action uncertainty $\mathbf{Q} \in \mathbb{R}^{6\times 6}$
- Measurement picker H = eye(6)
- Transition matrix $A \in R^{6\times 6}$ for given dt
- Persistent state estimate $X \in R^{6\times 1}$

Prediction	
x[t] = Ax[t-1]	State estimate
$P = (APA^T) + Q$	Predicted error cov
Update	
$S = HPH^T + R$	Pre-fit residual cov
$K = PH^T S^{-1}$	Optimal gain
y = m - Hx[t]	Pre-fit residual
x[t] = x[t] + Ky	Updated state estimate
P = (I - KH)P	Update estimate cov

Kalman Filtering – First Implementation Result


Kalman Filtering – Progress

Progress:

- Working Kalman filter that produces noticeable results on linear velocities
- Tuning by running/comparing parallel filters with different cov matrices

Up Next:

- Filter the F/T before conversion to velocities
- Implement Kalman model in MATLAB, tune covs in simulation
- Adaptive, dynamic covariances
 - Adaptive: Change cov based on post-fit residual
 - Dynamic: Scale cov based on dt since last ground truth (below)

Moving Forward

Approaching the Expected Goal

	Contact Force Compensation	Kalman Filtering	User Study
Problems	 Improve the housing to make it less axially "sticky" 		 Continue search for sEMG device
Steps	 Calculate/implement contact sensor tool weight compensation Incorporate contact force compensation into admittance control 	 Implement in MATLAB Determine optimal dynamic/adaptive covs for: Hand forces Hand torques Probe forces 	 Resubmit HIRB forms Perform the user study Over the over study
	1	 Probe forces 	мпе

ResearchLaboratory

References

T. Rousseau, N. Mottet, G. Mace, C. Franceschini and P. Sagot, "Practice Guidelines for Prevention of Musculoskeletal Disorders in Obstetric Sonography", *Journal of Ultrasound in Medicine*, vol. 32, no. 1, pp. 157-164, 2013. Available: 10.7863/jum.2013.32.1.157.

A. Schoenfeld, J. Goverman, D. Weiss and I. Meizner, "Transducer user syndrome: an occupational hazard of the ultrasonographer", *European Journal of Ultrasound*, vol. 10, no. 1, pp. 41-45, 1999. Available: 10.1016/s0929-8266(99)00031-2.

R. Finocchi, "Co-robotic ultrasound imaging: a cooperative force control approach", The Johns Hopkins University, 2016.

T. Fang, H. Zhang, R. Finocchi, R. Taylor and E. Boctor, "Force-assisted ultrasound imaging system through dual force sensing and admittance robot control", *International Journal of Computer Assisted Radiology and Surgery*, vol. 12, no. 6, pp. 983-991, 2017. Available: 10.1007/s11548-017-1566-9.

Image References

Title <u>https://www.universal-robots.com</u> (UR5)

Updates

https://en.wikipedia.org (Green Check) http://www.sclance.com (In Progress) https://peoplepng.com (You Are Here)

Gravity Compensation

https://english.stackexchange.com (3 axes)

T. Fang, H. Zhang, R. Finocchi, R. Taylor and E. Boctor, "Force-assisted ultrasound imaging system through dual force sensing and admittance robot control", International Journal of Computer Assisted Radiology and Surgery, vol. 12, no. 6, pp. 983-991, 2017. Available: 10.1007/s11548-017-1566-9.

Contact Force Feedback – Decision <u>http://sine.ni.com</u> (Honeywell sensor) <u>https://variense.com</u> (Variense sensor) <u>https://english.stackexchange.com</u> (3 axes)

Approaching the Expected Goal <u>https://thenounproject.com</u> (bicep) <u>https://www.onlinewebfonts.com</u> (sEMG line) 601.656 CIS2 Spring 2019

Thank you!

Questions?

