Robotic Ultrasound Power-Steering via Hand-Over-Hand Control

Computer Integrated Surgery II - Spring, 2019 Kevin Gilboy^{*}, advised by Dr. Mahya Shahbazi, Dr. Emad Boctor^{**} ^{*}kevingilboy@jhu.edu, ^{**}eboctor1@jhmi.edu

Results

Kalman Filtering

• Successful sensor noise reduction of 2x when in a static pose Effects of Kalman Filtering on Noise in a Static Pose

Smoothed readings w/ minimal phase-lag and over/undershoot

Introduction

- Implemented admittance control for a UR5 robot to assist and ease ultrasound (US) scanning
- Improved upon a previous attempt by using observerbased Kalman filtering to infer/smooth force readings and produce more transparent motion

This was done in an effort to **reduce sonographer exertion while scanning**, as well as **enable future robot-assisted US procedures** that could benefit from user hand-guidance.

The Problem and Prior Work

Up to 90% of sonographers experience occupation-related musculoskeletal disorders [1] from holding US probes in contorted positions while applying large forces.

Previous work by Finnochi [2] and Fang [3] used frequencydomain force filtering and nonlinear admittance control gains to implement hand-over-hand control in MATLAB, however the motion was non-transparent to the user.

The Solution

Extensible Software Implementation with CISST/SAW

New SAW components were Ο made to interface with the sawRobotiqFl while(true) dual force sensors get_ft() store_ft() main.cpp sawVarienseF while(true) while(true) Shared Memory get_f() get_readings() store_f() kalman()

Admittance Control

- Linear gains worked better than sigmoidal gains used in [2,3]
- Was qualitatively smooth to users in informal pilot study
- Due to hardware issues preventing probe contact force compensation, a quantitative user study had to be postponed

Lessons and Future Directions

This project touched upon many different technical aspects: robot programming in C++, interfacing with serial and analog hardware, robot kinematics, admittance control, tool-weight compensation, filtering techniques/tuning, and using neural networks for characterizing nonlinear systems.

Future work will first require a redesign of the probe contact force sensor housing and a user study for validation.

Afterward, work will be aimed at a **novel co-robotic application** of this framework **to US tomography** of the prostate for cancer diagnosis, in which a robot-held transabdominal probe will track the rotations of a freehand transrectal probe to capture an array of transmission US images necessary for tomographic reconstruction.

Kalman Filtering

 Used to smooth noise, predict future force values, and infer readings between force packets to allow faster control

Admittance Control Gains

• Piecewise linear with slope α and deadband between noise range $[-\eta, \eta]$

$$\dot{x} = \begin{cases} 0 & |F_{hand}| \leq \eta \\ sgn(\tilde{F}_{hand}) \cdot \alpha \left(|\tilde{F}_{hand}| - \eta \right) & |\tilde{F}_{hand}| > \eta \\ |\tilde{F}_{hand}| > \eta \end{cases}$$

 Tuned for optimal responsiveness and noise rejection

Support and Acknowledgements

In addition to the project's official mentors, we would like to thank **Dr. Russell Taylor** for his weekly feedback on this project and **Dr. Peter Kazanzides** for graciously providing us with a UR5 robot when ours broke during the final week.

References

[1] T. Rousseau, N. Mottet, G. Mace, C. Franceschini and P. Sagot, "Practice Guidelines for Prevention of Musculoskeletal Disorders in Obstetric Sonography", Journal of Ultrasound in Medicine, vol. 32, no. 1, pp. 157-164, 2013. Available: 10.7863/jum.2013.32.1.157.

[2] R. Finocchi, F. Aalamifar, T. Fang, R. Taylor and E. Boctor, "Co-robotic ultrasound imaging: a cooperative force control approach", *Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling*, 2017. Available: 10.1117/12.2255271.

[3] T. Fang, H. Zhang, R. Finocchi, R. Taylor and E. Boctor, "Force-assisted ultrasound imaging system through dual force sensing and admittance robot control", *International Journal of Computer Assisted Radiology and Surgery*, vol. 12, no. 6, pp. 983-991, 2017. Available: 10.1007/s11548-017-1566-9.