

Robotic Ultrasound Assistance

via Hand-Over-Hand Control

Group 5: Kevin Gilboy

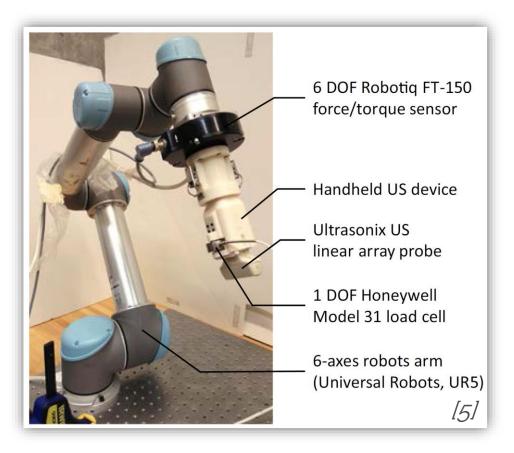
Mentors: Dr. Emad Boctor Dr. Mahya Shahbazi

Clinical Motivation

Ultrasound-guided procedures require long periods of time spent holding the probe in static, contorted positions and applying large forces [1]

- 63% 91% of sonographers develop musculoskeletal disorders [2]
 - General population: 13% 22%

Vision: hand-guide an ultrasound-holding robot to a POI, and have the robot do all the strenuous holding!

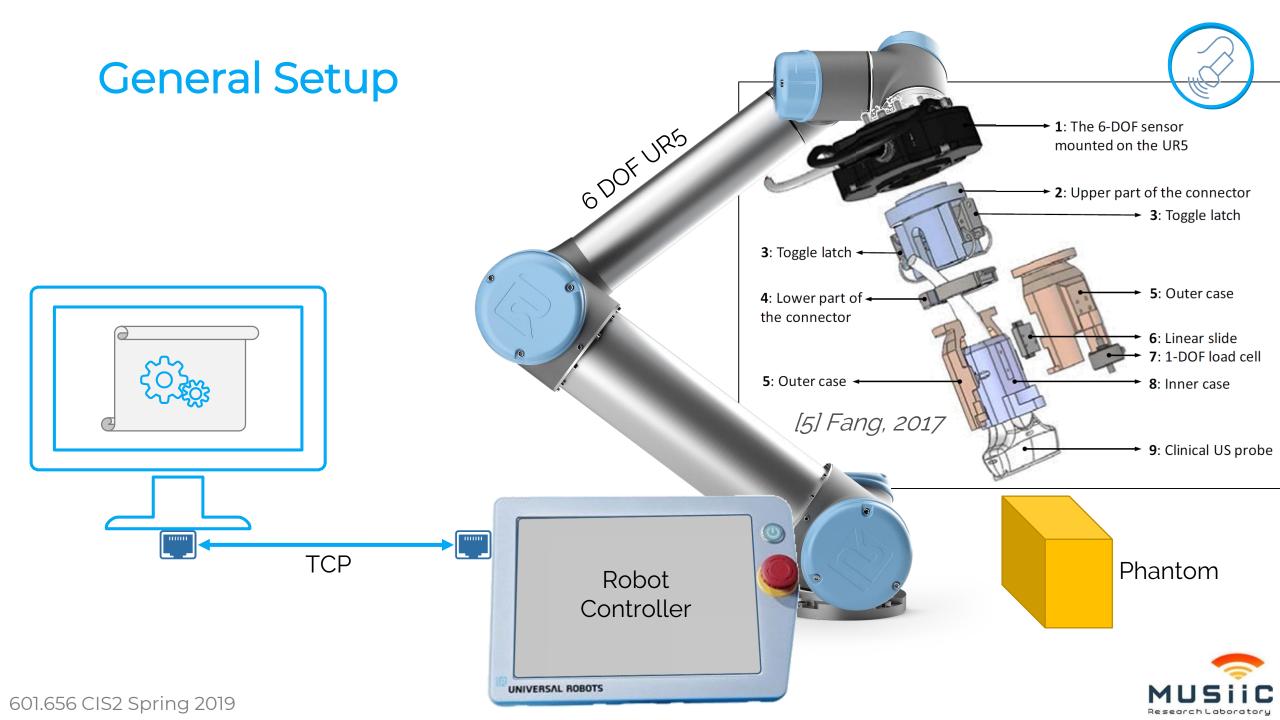


Prior Work - JHU

- Finocchi Thesis ('16) [3,4]
 - Initial mechanical design
 - o 1€ smoothing filter
 - Nonlinear Force \rightarrow Velocity gains
 - Virtual fixtures for synthetic aperture
 - User study
- Fang CIS2 ('17) [5]
 - Improved probe holder

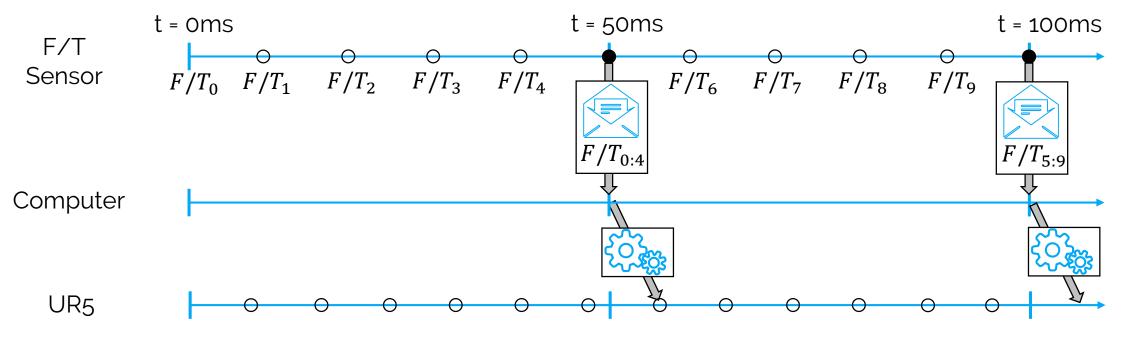
- Improve the transparency of "power-steering" admittance control for a hand-over-hand, ultrasound-wielding robot (6 DOF)
- Use dual-force sensing to maintain force profiles and virtual fixtures

If successful...



Progression in mitigating sonographer wrist issues

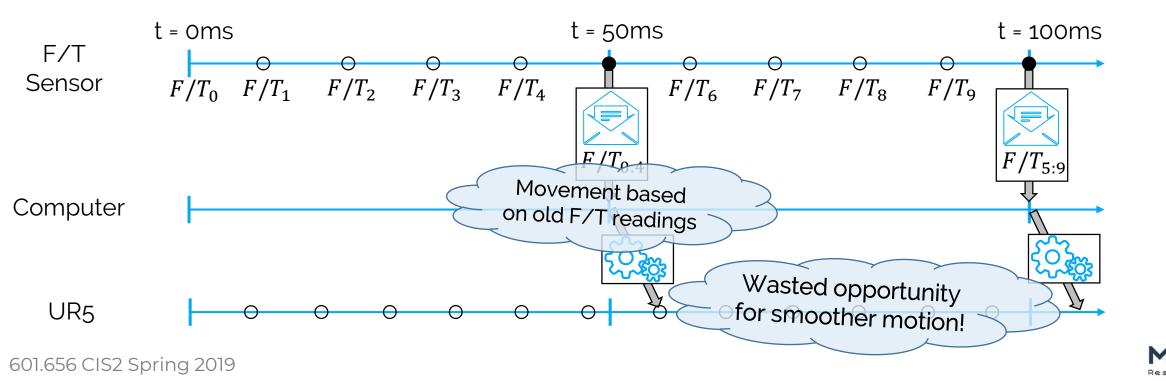
- Important "step 1" for many robotic ultrasound procedures
 - Repeatable biopsy, synthetic aperture...
 - ∘ US Tomography my thesis ☺


Technical Approach [1/2] - Controls

- Previous work focused on smoothing F/T measurements (1€ filter) [3,4]
- Data sparsity, latency, and wasted cycles is an equally large issue...

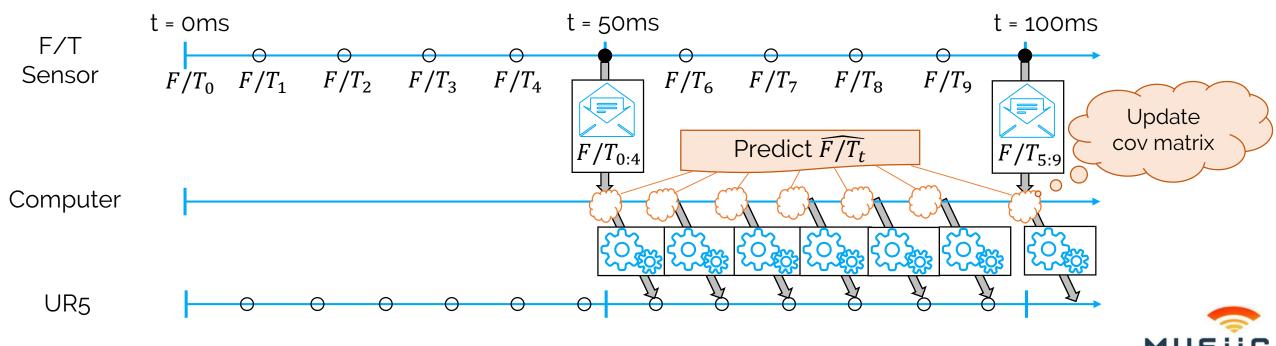
 $_{\rm o}~$ 100 Hz of F/T data received at 20 Hz

[3] Finocchi, 2016 [4] Finocchi, et al., 2017


Technical Approach [1/2] - Controls

- Previous work focused on smoothing F/T measurements (1€ filter) [3,4]
- Data sparsity, latency, and wasted cycles is an equally large issue...

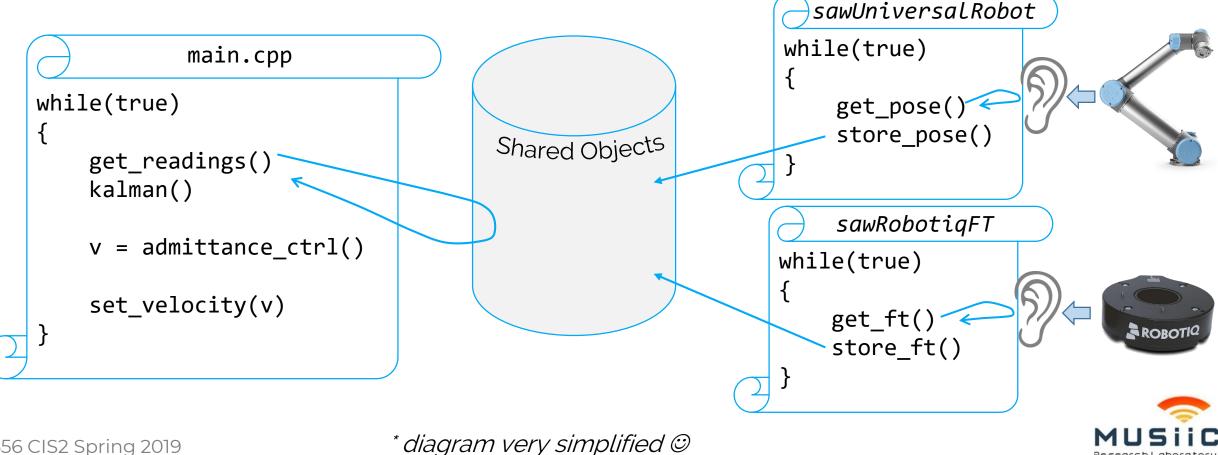
 $_{\rm o}~$ 100 Hz of F/T data received at 20 Hz


[3] Finocchi, 2016 [4] Finocchi, et al., 2017

Technical Approach [1/2] - Controls

- Will develop an adaptive Kalman filter observer to predict inter-packet F/T readings, reduce the effects of F/T, TCP latency
 - Adaptive since it compares real observations with previous predictions to adjust covariances and improve future predictions

Technical Approach [2/2] – Program Optimization


- Previous work was a great proof-of-concept, but inherently slow
 - Used MATLAB scripting
 - Used UR5 as a TCP client

Technical Approach [2/2] – Program Optimization

- Will solely use C++ running on a desktop, no client queries
- CISST/SAW libraries for interfacing

V&V Testing Approach

- Verification is *it* doing *it* right?
 - Questionnaire for sonographers regarding perceived
 wrist strain with and without the robotic assist
 - Will need some quantitative test for "improved transparency."
 Finocchi [3,4] used strain gauges on the probe handle.

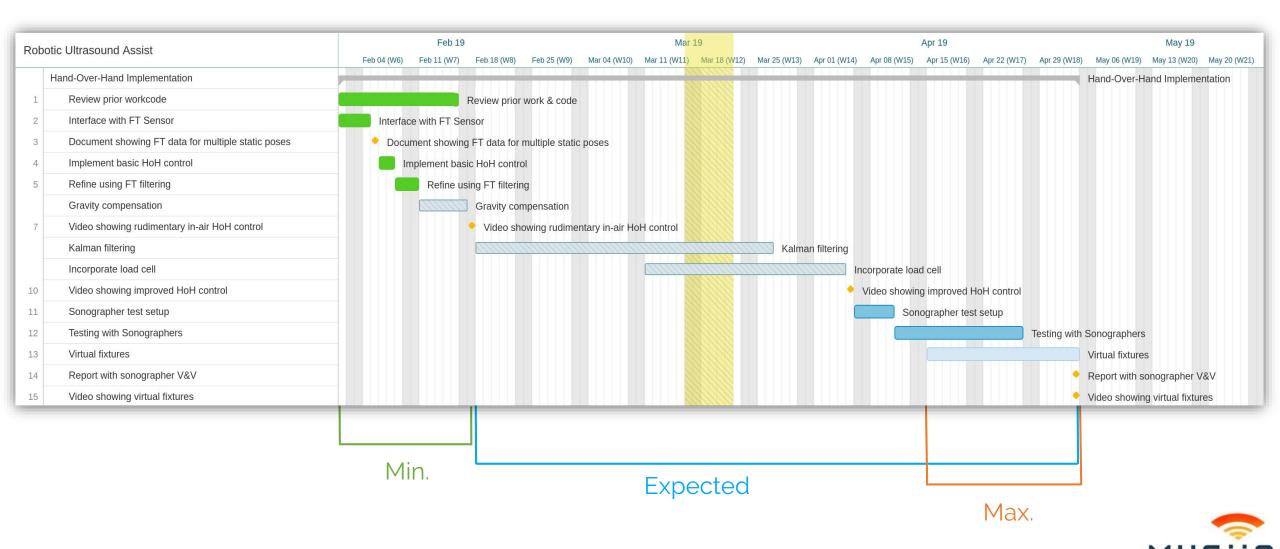
- Validation is *it* the right *it*?
 - Questionnaire for sonographers regarding clinical usability of the robotic assist in its final state

Key Activities and Deliverables

ResearchLaboratory

	Activity	Deliverable
Min.	C++ interface with robot and dual force sensors to collect data	Datasets for multiple static poses
	Implement rudimentary in-air admittance control, gravity compensation	Video of functionality, graphs showing compensation, code
Expected	Implement improved admittance control incorporating probe-pt. force feedback	Video of functionality, code
	Qualitatively & quantitatively evaluate the system with test subjects	Report with graphs and statistical validation
Max.	Virtual fixtures	Video of functionality, code

Dependencies

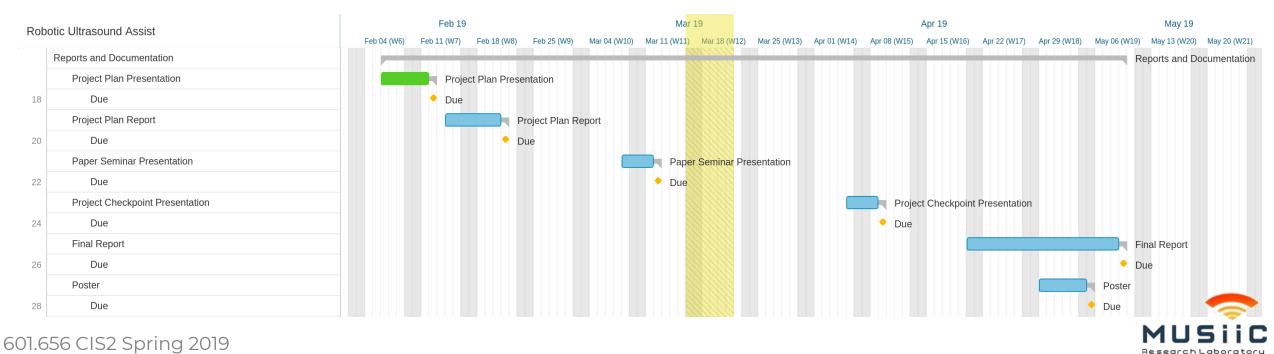

Dependency	Need	Status	Followup	Contingency Plan	Planned Deadline	Hard Deadline
Robot	Quite obvious ;)	Have a working UR5	N/A	If breaks, could seek continued permission to use UR3 in Bo8	2/1	2/1
6DOF F/T Sensor	Admittance control input	Have a working Robotiq FT-150	N/A	If breaks, look to order another through the MUSiiC Lab	2/1	2/1
Load Cell	Decouples force from probe on pt.	Have an untested Honeywell Model 31	Must test the load cell asap	If broken, look to order another through the MUSiiC Lab	2/12	2/28
Ultrasound Probe	Key component for realistic testing	Have a curved probe, several others available in our lab pod	N/A	If disappears, seek permission to use another probe available in lab pod	2/1	4/1
Phantom (non-anatomical)	Something to test the probe on	Un-acquired, several available in our lab pod	Seek permission from Dr. Boctor to use phantoms in lab pod	If unable to acquire, test on easily available surfaces like polyethylene foam	2/1	4/1
HIRB Approval	Testing with sonographers	Unsubmitted, untrained for human subjects testing, HIPPA	Undergo training, revise and submit plan from Nov '16	If unapproved, test on non- sonographers	2/22	^{3/1}

Timeline – HoH Control

ResearchLaborator

Timeline – TL&DR

ResearchLaboratory


	Key Activity Milestones			Deliverables		
Min <u>.</u>	• 2/4	Sensor interfacing	• 2/5	Document of static sensor readings for multiple poses		
2	• 2/16	Gravity compensation	• 2/17	Video of in-air HoH control		
Expected	• 4/4	Kalman filtering Load cell Sonographer testing		Video of functionality Document of test results		
Max.	• 4/26	Virtual fixtures	• 5/3	Video of functionality		
656 C	IS2 Sprina 2019			MUS		

Timeline – Dependency Resolution

Timeline – Reports and Documentation

The Team:

Kevin Gilboy: Sole responsibility for all tasks

Mentors:

Dr. Emad Boctor: Ultrasound, CIS, JHMI connections, "the vision" Dr. Mahya Shahbazi: Control systems design, CIS, robot kinematics

- Meetings
 - Weekly meetings with Dr. Boctor
 - Ad-hoc, likely weekly, meetings with Dr. Shahbazi

Reading List

Older

H. K. **Zhang**, R. Finocchi, K. Apkarian and E. M. Boctor, "Co-robotic synthetic tracked aperture ultrasound imaging with cross-correlation based dynamic error compensation and virtual fixture control," *2016 IEEE International Ultrasonics Symposium (IUS)*, Tours, 2016, pp. 1-4. Available: 10.1109/ULTSYM.2016.7728522

H. **Zhang**, A. Cheng, N. Bottenus, X. Guo, G. Trahey and E. Boctor, "Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation", *Journal of Medical Imaging*, vol. 3, no. 2, p. 027001, 2016. Available: 10.1117/1.jmi.3.2.027001.

R. **Finocchi**, "Co-robotic ultrasound imaging: a cooperative force control approach", The Johns Hopkins University, 2016.

R. Finocchi, F. Aalamifar, T. Fang, R. Taylor and E. Boctor, "Co-robotic ultrasound imaging: a cooperative force control approach*", Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling*, 2017. Available: 10.1117/12.2255271.

T. Fang, H. Zhang, R. Finocchi, R. Taylor and E. Boctor, "Force-assisted ultrasound imaging system through dual force sensing and admittance robot control", *International Journal of Computer Assisted Radiology and Surgery*, vol. 12, no. 6, pp. 983-991, 2017. Available: 10.1007/s11548-017-1566-9.

Newer

S. Farsoni, C. Landi, F. Ferraguti, C. Secchi and M. Bonfe, "Compensation of Load Dynamics for Admittance Controlled Interactive Industrial Robots Using a Quaternion-Based Kalman Filter", *IEEE Robotics and Automation Letters*, vol. 2, no. 2, pp. 672-679, 2017. Available: 10.1109/lra.2017.2651393.

Additional References

[1] A. Schoenfeld, J. Goverman, D. Weiss and I. Meizner, "Transducer user syndrome: an occupational hazard of the ultrasonographer", *European Journal of Ultrasound*, vol. 10, no. 1, pp. 41-45, 1999. Available: 10.1016/s0929-8266(99)00031-2.

[2] T. Rousseau, N. Mottet, G. Mace, C. Franceschini and P. Sagot, "Practice Guidelines for Prevention of Musculoskeletal Disorders in Obstetric Sonography", *Journal of Ultrasound in Medicine*, vol. 32, no. 1, pp. 157-164, 2013. Available: 10.7863/jum.2013.32.1.157.

[3] R. Finocchi, "Co-robotic ultrasound imaging: a cooperative force control approach", The Johns Hopkins University, 2016.

[4] R. Finocchi, F. Aalamifar, T. Fang, R. Taylor and E. Boctor, "Co-robotic ultrasound imaging: a cooperative force control approach*", Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling*, 2017. Available: 10.1117/12.2255271.

[5] T. Fang, H. Zhang, R. Finocchi, R. Taylor and E. Boctor, "Force-assisted ultrasound imaging system through dual force sensing and admittance robot control", *International Journal of Computer Assisted Radiology and Surgery*, vol. 12, no. 6, pp. 983-991, 2017. Available: 10.1007/s11548-017-1566-9.

Image References

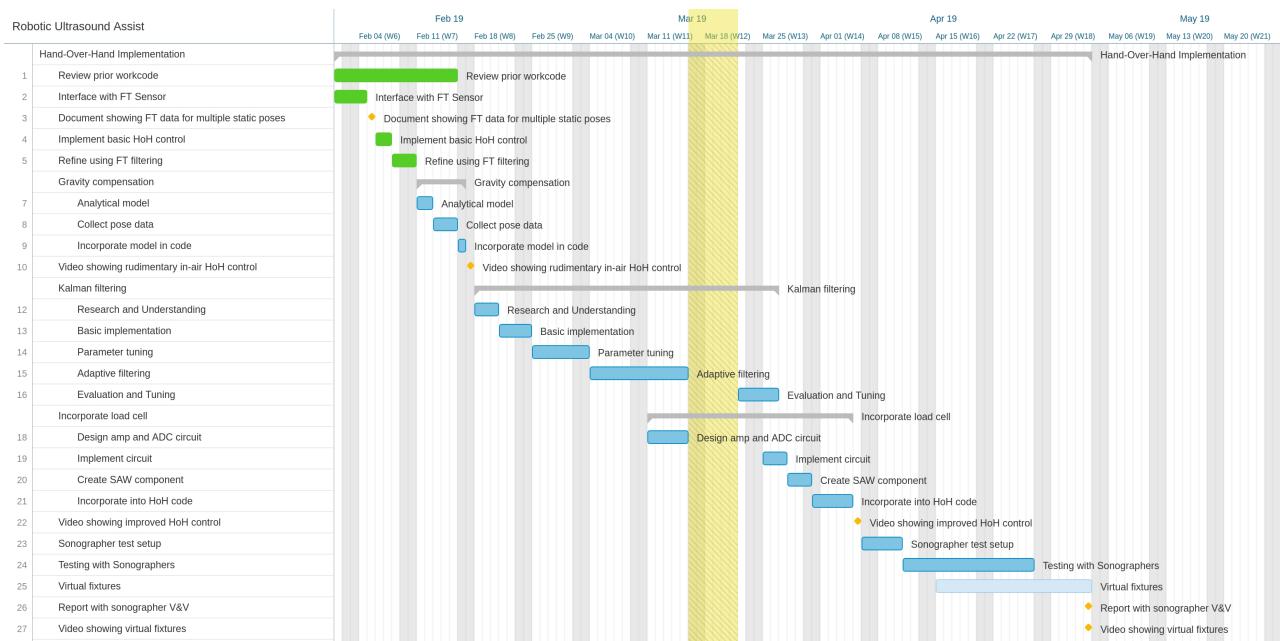
Title <u>https://www.universal-robots.com</u>

Ultrasound Probe https://www.radiology.ca/services/ultrasound

General Setup <u>https://thenounproject.com/</u> <u>https://www.universal-robots.com</u>

Program Optimization <u>https://www.universal-robots.com</u> <u>https://robotiq.com/</u> <u>https://www.pngarts.com/</u>

Management Plan https://git-scm.com/ https://overleaf.com/ https://ciis.lcsr.jhu.edu/


Thank you!

Questions?

Appendix: Full HoH Gantt

