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1. Objectives 

Biopsy is a medical procedure for the diagnosis of suspicious masses. Sample cells or tissues 

are extracted from the lesion for examination under microscope or for chemical analysis to 

indicate the type of tumor (benign vs. malignant). During a biopsy procedure, ultrasound (US) 

imaging is used to visualize the lesion and navigate the needle to the target.  

During a pathologist-in-room session, which is a well-established practice at most hospitals, it 

is required to repeat the biopsy procedures several times to ensure that the collected samples 

are informative enough for making an accurate diagnosis. At each time, the acquired sample 

cells are evaluated under a microscope by a pathologist in the room, before the next sample 

cell are acquired. During the multi-sample acquisition procedure, it is very essential to provide 

the radiologist with a consistent view of the lesion to enable them to acquire distinct samples 

from the lesion. Keeping a consistent view of the lesion, despite the patient’s physiological 

movement, is a very tedious and cumbersome task for the sonographer, who has to keep the 

ultrasound probe in place for the whole duration of the biopsy session (which could even last 

more than half an hour). 

Therefore, the goal of this project is to realize a robot-assisted visual servoing platform that 

can track a desired ultrasound view for the purpose of repeatable biopsy. The system will help 

make the repeatable biopsy procedure more efficient and convenient for the radiologists and 

the sonographers. 

2. Background and significance  

As a safe and cheap source of imaging, ultrasound is always implemented to guide needle 

biopsy procedures. The ultrasound probe is placed at a certain position to provide a 

visualization of the lesion. With the ultrasound image, the sonographer can then insert and 

advance the biopsy needle to the target lesion for acquiring sample cells or tissues. At the same 

time, the sample acquired must be evaluated by experienced pathology technicians to verify its 

effectiveness. If the sample is not diagnosable, the radiologist should repeat the procedures for 

the acquisition of more pathology samples, and the ultrasound probe should be placed to the 

certain slice again to view the lesion.  

Currently, the ultrasound-guided biopsy is conducted all manually by sonographers. The 

sonographer has to hold the ultrasound transducer throughout several passes to maintain 

consistent visualization of the lesion or mass. It is tiring and almost impossible to hold the 

probe still and retain the slice for around ten to twenty minutes. Once moved, it will be time 

consuming to regain the view of the target. Therefore, it will be of great significance if the 

repeatable biopsy can be improved by the introduction of robotic systems for freehand locating 

and navigation. 

In order to track the target image, it is essential to estimate both in-plane and out-of-plane 

motion of the probe. In existing literature, the in-plane motion can be estimated by conventional 



2D image registration (Prager et al, 2007). And the out-of-plane motion can be estimated by 

speckle correlation. Because the focus of the ultrasound probe is poor along the elevational 

axis, the resolution cell elongates along this direction. The interference of the scatters in the 

cell form “noise” in the image, which is the speckle. And there is correlation among the 

speckles if two images cover the same resolution cells. Therefore, conventional methods 

(G.Treece et al, 2002) use the inter-patch correlation to obtain a plot of speckle decorrelation 

vs elevational distance at calibration stage, and then estimate the elevational distance by 

looking at this plot. 

Today, with the development of deep learning, it provides the possibility to model the distance 

of the neighboring images in the robot frame via the neural network (NN). And then the NN 

can be augmented into the control loop, and finally let the robot locate and navigate to the pre-

specified slice. In this project, we will first develop the testbed and acquire data on multiple 

phantoms and/or animal organs. The collected data will then be used to train the NN to model 

the motion based on correlation between two neighboring images. Finally, the NN will be 

added into the control loop for motion compensation, and the system will be evaluated on 

different organs. 

3. Technical summary  

Development of the (robotic) testbed 

 

Figure 1 Testbed with UR5 

Given the limited range (about 1mm) that speckle decorrelation is accurate and effective, the 

resolution of the acquired data should be around 25 microns. Therefore, a Cartesian stage with 

a dial gauge will be used to accurately adjust and measure the distance. As a backup, a UR5 

robot arm can also be used to collect data, only the smallest step size is 0.2mm. The probe 

holder attached to the end effector of UR5 was developed in a previous CIS 2 project. 

Ultrasonix ultrasound system and a linear array transducer is used to get B-mode images. The 

image depth is set to 4.0cm and the sampling frequency is 10MHz. The gain will be adjusted 

accordingly and then kept unchanged to obtain a clear view.  

In order to make use of speckle decorrelation, the images acquired will have a resolution of 

0.02mm along the elevational direction. The step size could be larger for axial and lateral 

translation. The range of translational motion will be about 1 cm. For rotations, the resolution 

will be 0.2 degrees and the range will be 2 degree.  Data collection will start with 1DoF and 



ultimately upgrade to 6DoF. 

CNN to find the correlation in two neighboring images 

Convolutional neural network (CNN) is widely used in image classification, image and video 

recognition and medical image analysis. The complexity of CNN may help better estimate the 

elevational distance. In this project, the initial architecture will be based on a previous work 

(Prevost et al, 2017). It is a standard CNN with two input channels (each for one image), four 

convolutional (Conv2D) layers and one fully connected (FC) layer. The output is the six 

parameters used to represent rigid body transformation. However, their architecture may not 

match our objectives. Therefore, tuning the hyperparameters and changing the architecture both 

worth trying.   

Mean absolute error and mean absolute percentage are the two parameters used to evaluate the 

effectiveness of the neural network. Comparison with some current state-of-art methods will 

also be helpful for evaluation. 

 

 

Figure 2 Possible CNN architecture 

 

Visual servoing 

After the estimation of both in-plane and out-of-plane motion, a hybrid control scheme can be 

developed for visual servoing. The paper (Krupa et al, 2009) will be a good reference for visual 

servoing. And the detail of this part will be settled after the development of NN. 

4. List of dependencies and alternatives 

Dependency Solution Alternatives Due Date If not met Status 

UR5 Access to the lab 

 

N/A Feb 14 Delay of the 

project 

Resolved 

Phantoms/ 

animal organs 

In the lab N/A Feb 20 / Resolved 

Simulated 

Data  

Provide by Dr. 

Marius 

N/A    

Ultrasonix 

Ultrasound 

system and 

software 

In the lab. And 

software 

downloaded 

from Baichuan. 

N/A Feb 14 Delay of the 

project 

Resolved 

Computation GPU or Google Training Feb 26 / Resolved 

https://www.google.com/url?sa=i&source=i

mages&cd=&cad=rja&uact=8&ved=2ahUK

Ewi0ntuxgvHgAhVFNd8KHbbTD7AQjRx

6BAgBEAU&url=https%3A%2F%2Fwww.

researchgate.net%2Ffigure%2FIllustration-

of-Convolutional-Neural-Network-CNN-

Architecture_fig3_322477802&psig=AOvV

aw050G1SRRNe1NUEfsjLvoSN&ust=155

2081998995916 

 



power Cloud Engine with CPU  

Optical tracker  The rest can be 

borrowed. 

/ Resolve this 

only when it 

is needed. 

/  

Motorized 

Linear stage 

Borrow one Manual 

linear stage 

Feb 28 Delay of data 

collection 

Not yet 

Dial Gauge Buy one (Dr. 

Boctor/ Dr. 

Taylor); 

Borrow? 

 Mar 8 Delay of data 

collection 

 

Not yet 

 

5. Deliverables 

• Minimum: development of robotic testbed and initial data acquisition on multiple 

phantoms 

• Expected: development and evaluation of the NN to accurately model in-plane and out-

of-plane motions based on correlations between neighboring images 

• Maximum: augmenting the NN into the control loop of the robot for motion 

compensation and evaluating the system on different types of organs  

• Follow-on: finding the location of and navigating to a pre-specified slice, given some 

nearby slices 

 

6. Schedule 

Detailed Gantt chart is provided in an additional file on the web page. See Gantt Chart.xlsx. 

 

 

7. Management Plan 

1. Weekly meeting with mentors (every Wednesday and Friday); 

2. Codes will be stored in GitHub;  

3. Ultrasound images will be uploaded to JH Box. 
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