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(https://www.mayoclinic.org/tests-procedures/needle-biopsy/about/pac-20394749)



Background
Tumor biopsy guided by ultrasound(US) images.

Procedure of biopsy with pathologists in room: 

Consistent view of the lesion/mass must be obtained to acquire samples from several areas.

A tedious and cumbersome task to hold the US probe during the whole biopsy session.
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Objectives and significance
A robot-assisted system to provide steady ultrasound imaging.

The robot will hold the probe and navigate.

The whole procedure will be more efficient and less cumbersome for sonographers.

In this project :
◦ Collect data (neighboring images, force alteration and the whole volume)

◦ Train the neural network to model the in-plane and out-of-plane motion in a very small range 
(based on speckle decorrelation in neighboring US images) 

◦ Augment the NN into the control loop to realize servoing

◦ Locate and navigate to the specified slice given the neighboring images
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Literature review
In-plane motion: can be estimated by conventional 2D image registration (G. Treece et al 2002).

Out-of-plane motion: elevational motion can be estimated by speckle decorrelation.

Fully developed speckles, so  poor accuracy especially with real tissues.
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Approach: workflow
Workflow
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Approach: data collection
Data collection

Testbed design and setup: 
◦ Step size: ~ 0.02mm, 0.02deg

◦ Range: ~ 2cm, +/- 1 deg

Equipment:
◦ UR5

◦ Ultrasound system (Probe attached to UR5)

◦ Linear stage (accuracy: 0.001mm)

◦ Phantoms/animal organs in a water tank attached to the linear stage

First, move the linear stage for axial, lateral and elevational motion.

Second, use UR5 for 6 DoF?

Finally, add in force sensor readings, and the volumetric scan.
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Approach: CNN for data processing
Convolutional Neural Network (CNN) for data processing

◦ Input: two neighboring US images

◦ Output: SE(3) ΔF between two images in the tool tip (probe) frame 

◦ Modify existing CNN (AlexNet, VGG) to prove its feasibility

◦ A recent study (Prevost, Salehi, & Wein 2017) shows the potential of using CNN to improve accuracy

◦ Hierarchical parameters regression (Miao, Wang & Liao 2016)
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Approach: servoing
Servoing

◦ Error (ΔX, ΔY, ΔZ, Δα, Δβ, Δγ) given by the result calculated in the NN

◦ Augment this Error into the control loop

◦ Generate control signal to move UR5

◦ Details will be planned after the validation of the NN
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List of dependencies
Dependency Solution Alternatives Status Due If not met?

Phantoms/ animal

organs

Start with phantoms in

the lab

Use 3D ultrasound

data provided by Dr.

Marius

Phantoms

solved; rest not

yet

Feb 15 /

UR5 In the lab

Provided by Dr. Boctor

Solved / /

Ultrasound system Provided by Dr. Boctor Solved Feb 15 /

3D ultrasound data Follow up with

Fereshteh and/or Reza

Collect volumetric

data myself

Not yet

Computation power e.g. Google cloud

engine

Not yet Mar 1 Iteration of NN

training will be slowed

down
(3DoF) Linear stage Dr. Taylor Use UR5 Not yet Feb 22 UR5 cannot meet the

resolution ( ~ 0.02mm)

Optical tracker (if

needed for calibration)

EM tracker Not yet
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Deliverables
Minimum: (robotic) experiment testbed and initial data acquisition on 
multiple phantoms

Expected: development and evaluation of the NN to accurately model in-
plane and out-of-plane motions based on correlations between neighbouring 
images

Maximum: augmenting the NN into the control loop of the robot for 
motion compensation and evaluating the system on different types of organs

CIS 2 PROJECT PROPOSAL    GROUP 7 11



Schedule
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Milestones
Early March: Testbed setup

Early April: A good amount of data

April 20: a trained neural network 

May 5: control loop with NN 
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Management plan
Group meeting with mentors
◦ every Friday

File management: 
◦ Initial data collected: JH box

◦ Code: GitHub 

CIS 2 PROJECT PROPOSAL    GROUP 7 14



Reading list
H. Rivaz, R. Zellars, G. Hager, G. Fichtinger, & E. Boctor. (2007). 9C-1 beam steering approach for speckle characterization and out-of-plane 
motion estimation in real tissue. Paper presented at the 2007 IEEE Ultrasonics Symposium Proceedings, 781-784. 
doi:10.1109/ULTSYM.2007.200

R. J. Housden, A. H. Gee, G. M. Treece, & R. W. Prager. (2007). Sensorless reconstruction of unconstrained freehand 3D ultrasound 
datadoi://doi.org/10.1016/j.ultrasmedbio.2006.09.015

G. M. Treece, R. W. Prager, A. H. Gee, & L. Berman. (2002). Correction of probe pressure artifacts in freehand 3D ultrasound doi://doi-
org.proxy1.library.jhu.edu/10.1016/S1361-8415(02)00080-4

R. Prevost, M. Salehi, J. Sprung, R. Bauer, & W. Wein. (2017). Deep Learning for Sensorless 3D Freehand Ultrasound Imaging. Medical 
Image Computing and Computer-Assisted Intervention − MICCAI 2017. MICCAI 2017.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & Lecun, Y. (2014). Overfeat: Integrated recognition, localization and detection 
using convolutional networks. In International Conference on Learning Representations (ICLR2014), CBLS, April 
2014 [http://openreview.net/document/d332e77d-459a-4af8-b3ed-55ba, http://arxiv.org/abs/1312.6229]

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, & J. Liang. (2016). Convolutional neural networks for medical 
image analysis: Full training or fine tuning?IEEE Transactions on Medical Imaging, 35(5), 1299-1312. doi:10.1109/TMI.2016.2535302

S. Miao, Z. J. Wang, & R. Liao. (2016). A CNN regression approach for real-time 2D/3D registration. IEEE Transactions on Medical 
Imaging, 35(5), 1352-1363. doi:10.1109/TMI.2016.2521800

W. J. Wilson, C. C. Williams Hulls, & G. S. Bell. (1996). Relative end-effector control using cartesian position based visual servoing. IEEE 
Transactions on Robotics and Automation, 12(5), 684-696. doi:10.1109/70.538974

……

CIS 2 PROJECT PROPOSAL    GROUP 7 15


