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Background

Tumor biopsy guided by ultrasound(US) images.

Procedure of biopsy with pathologists in room:

Acquire Evaluate the
sample sample by
cells/tissues pathologist

Visualize the
lesion/mass

Consistent view of the lesion/mass must be obtained to acquire samples from several areas.

A tedious and cumbersome task to hold the US probe during the whole biopsy session.
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Objectives and significance

A robot-assisted system to provide steady ultrasound imaging.
The robot will hold the probe and navigate.

The whole procedure will be more efficient and less cumbersome for sonographers.

In this project :
o Collect data (neighboring images, force alteration and the whole volume)

° Train the neural network to model the in-plane and out-of-plane motion in a very small range
(based on speckle decorrelation in neighboring US images)

o Augment the NN into the control loop to realize servoing
° Locate and navigate to the specified slice given the neighboring images
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Literature review

In-plane motion: can be estimated by conventional 2D image registration (G. Treece et al 2002).

Out-of-plane motion: elevational motion can be estimated by speckle decorrelation.

Fully developed speckles, so poor accuracy especially with real tissues.
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Approach: workflow

Workflow

Collect data
Implement deep learning Train the
to find AF between two e TAOrk

images in the robot
frame for servoing.

Augment the
network into
the control loop

Evaluate the
system with
different organs
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Approach: data collection

Data collection

Testbed design and setup:
o Step size: ~ 0.02mm, 0.02deg
o Range:~ 2cm, +/- 1 deg

Equipment: >
o UR5S

o Ultrasound system (Probe attached to UR5)
o Linear stage (accuracy: 0.001mm)

> Phantoms/animal organs in a water tank attached to the linear stage Probe still, but trivial motion
of the organs

First, move the linear stage for axial, lateral and elevational motion.
Second, use UR5 for 6 DoF?
Finally, add in force sensor readings, and the volumetric scan.
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Approach: CNN for data processing

Convolutional Neural Network (CNN) for data processing
° Input: two neighboring US images

[¢]

Output: SE(3) AF between two images in the tool tip (probe) frame
Modify existing CNN (AlexNet, VGG) to prove its feasibility
A recent study (Prevost, Salehi, & Wein 2017) shows the potential of using CNN to improve accuracy
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Hierarchical parameters regression (Miao, Wang & Liao 2016)
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Approach: servoing

Servoing

o Error (AX, AY, AZ, Aa, AB, Ay) given by the result calculated in the NN
o Augment this Error into the control loop

o Generate control signal to move UR5

o Details will be planned after the validation of the NN
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List of dependencies

Dependency Solution Alternatives Status Due If not met?
Phantoms/ animal [ Start with phantoms in|Use 3D ultrasound | Phantoms Feb15 |/
organs the lab data provided by Dr. |solved; rest not
Marius yet
UR5 In the lab Solved / /
Provided by Dr. Boctor
Ultrasound system Provided by Dr. Boctor Solved Feb 15 /
3D ultrasound data Follow up with Collect volumetric | Not yet
Fereshteh and/or Reza | data myself
Computation power e.g. Google cloud Not yet Mar 1 Iteration of NN
engine training will be slowed
down
(3DoF) Linear stage Dr. Taylor Use URS Not yet Feb 22 UR5 cannot meet the

resolution ( ~ 0.02mm)

Optical  tracker  (if EM tracker Not yet
needed for calibration)
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Deliverables

Minimum: (robotic) experiment testbed and initial data acquisition on
multiple phantoms

Expected: development and evaluation of the NN to accurately model in-
plane and out-of-plane motions based on correlations between neighbouring

iImages

Maximum: augmenting the NN into the control loop of the robot for
motion compensation and evaluating the system on different types of organs
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Schedule

Background reading, plans

Testbed setup

Data collection

Training NN

Augment NN into control
loop

Evaluation

Final report
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Milestones

Early March: Testbed setup

Early April: A good amount of data
April 20: a trained neural network

May 5: control loop with NN
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Management plan

Group meeting with mentors
o every Friday

File management:
o |nitial data collected: JH box
o Code: GitHub
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