
User Interface for Radiation Therapy Cohort
Selection

Domonique Carbajal and Keefer Chern
Mentors: Dr. Todd McNutt and Pranav Lakshminarayanan

May 9, 2018

Computer Integrated Surgery II
Dr. Russell Taylor

Spring 2019

1. Introduction
2. Technical Approach
3. Results
4. Significance
5. Management Summary
6. Acknowledgement
7. References

1. Introduction

Radiation therapy is a cancer treatment that utilizes high doses of ionizing

radiation to kill cancer cells and control tumors. Each radiation therapy session for a
patient requires a specifically tailored treatment, which needs to have high accuracy and
guarantee to deliver the correct amount of radiation to the desired area. Typically
multiple sessions are needed in order for the cancer to be treated and after each
session, specific dose-volume data can be obtained. The practice of radiation therapy
can significantly benefit from using previous patient data to tailor treatment for new
patients; especially when considering what dose should be applied to a certain region of
interest or anticipating toxicities.

There exists a SQL database which contains large amounts of data of patients
with different types of cancers and a website connecting with this database
(Oncospace). For example, there is data for 1,550 head and neck radiation therapy
patients with up to 6 years follow up and data for 2,096 prostate cancer patients. A
website written in C# is connected with this database, which has visualizations for
different types of data. Some of these visualizations include distribution of clinical
assessments and patient demographics. Each patient data point holds a variety of
information, which can be categorized into static, longitudinal, or derived variables.
Static variables are information about the patient that does not change throughout
treatment. Examples of static variables are date of birth, race, gender, and diagnosis.
Longitudinal variables are information that should change throughout the course of
treatment and recovery. Typically these variables change as a function of time. An
example of a longitudinal variable is duration and onset of symptoms(toxicities and
grades). Lastly, we have the derived variables, which are information that require a
mathematical computation to be applied to extract useful data from. An example of such
variable is the dose volume histogram, where each patient has a set of points making
up a curve that must be looked at in its entirety.

This data can be used for a significant amount of applications in regards to
research and clinical care. There is a desire for doctors and researchers in applying this
data for quality reporting, decision support, and studies. Specifically, quality reporting
includes analyzing disparities of care, practicing quality reporting, and safety. Decision
support includes toxicity prediction, data-driven quality control, and treatment
adaptation. Lastly, research applications for this data include performing clinical trials
and answering biological questions. Gaining all the benefits from the data available
requires an easy to use system that can relay the information desired into a
comprehensive format.

 Currently, there is no quick and intuitive way to select patient cohorts from this
database other than through a free text SQL Query. This requires knowledge of the
exact variable names and some familiarity with the language. There are also no visuals
of the outcomes of these patients selected by these many variables. Researchers
hoping to compare groups or select a group to further study are prevented from fully
utilizing the data available.

2. Technical Approach

The goal of our project was to create a user interface that would allow for easy

selection of filters to apply onto the patient data and create cohorts. The user interface
would also allow for visualizations of longitudinal data for exploration of significant
features. Another added feature would be the saving and loading of cohort selections.

2.1. Front End (Summary)

Our implementation involves integrating a few packages to create the user
interface on a web application. The code is primarily written in html and java. In addition,
SQL queries were generated utilizing java. Eclipse is the development environment for
the project. For the build tool, this project utilizes Maven due to its integration with
Eclipse and has an easy way to handle libraries. To develop the look and feel of the
user interface, this project uses Java Server Faces(JSF), which is a Java specification
for building component-based user interfaces for web applications. JSF would largely be
used with primefaces to generate the visuals of the application. Apache Tomcat
provides a Java HTTP web server environment for the web application to run in. Spring
is used for object instantiation. Hibernate ORM is an object-relational mapping tool for
Java which is used to connect to databases.

2.2. Back End (Summary)

The oncospace microsoft SQL server database is the source of all of the data
being provided to the front end and used in creating the visualizations. This database
involves a very complex schema of connected tables and patient representations. We
were not given access to all of the available information in the database and as a result
limited our filtering to the available useful variables.

2.3. Step by Step Technical Procedure

Figure 1. Shows how the code communicates between each component of the application. The user interacts
with an html page, which then transfers user input to the intermediary code. The intermediary code process
the input, queries for information with hibernate, and then sends user’s desired information back to the html
page. The user then has the option to save the query and extract cohort IDs.

2.3.1. Setting up the Framework

To start off we set up the developing environment using the installation process
as discussed in the documentation. Afterwards, we worked towards connecting our
application to the database using a hibernate file, which contains all the login
information required to connect to the SQL server. After that we set up four separate
intermediate layers with each providing a different function to our application. The first
layer is the Data Transfer Object layer (dto), which creates an object that would
represent each table that our application interacts with in the database. The second
layer is the Data Access Object layer (dao), which would generate SQL Query scripts
that would then be sent to hibernate to extract data; the returned data would be stored
into dto objects. Next is the service layer, which would contain the inputs from the user
and call on the dao layer in order extract data. The final layer is the User Interface layer
(ui) which would connect .html files to the other intermediate layers and perform the
majority of the business logic. With all the intermediate layers setup, we then create the
.html files that would be the front end of our implementation and display all our visuals.

For all the visuals we will be using primefaces, which is an open source framework for
JavaServer Faces. This completes the set up for the framework of our application.

2.3.2 Developing Algorithm for Static and Longitudinal Variables

The algorithms are developed in SQL to produce the patient data in the case of
static variable filtering and to produce patient counts in the case of longitudinal variable.
The complexities of static variable algorithms involve the connection of tables in the
database schema. An example of this can be seen in ​Figure 3 ​with the connection
required between the tables Patient and Patient Representations to access both ROI
and Assessments. The longitudinal algorithms require subqueries of patient IDs to
assure that the patients have instances of data with the dates in each time period(<7,
between 180 and 365, and >540). It also uses the patient IDs to make a count of the
number IDs for each specific grade. ​Figure 2 ​ just gives the grade counts for the
earliest date for each patient and is an example of the complexity of the algorithms
required to gather the data to make visualizations.

Figure 2. Example of the longitudinal algorithms that are required to provide count data of each grade.

Figure 3. Example of portion of database schema exhibiting complex interconnectedness

of the tables. Ex. ROI is associated with a Patient Representation ID and Patient Representation
table, Patient Representation ID each has an associated Patient ID, and Patient ID is needed to
access Assessments which includes toxicities.

2.3.3. Implementing each Algorithm

For each of the developed algorithms, we would apply them onto our framework.
To do this we would need to modify our intermediate layers. Our dao layer would be
modified to be able to generate the types of SQL queries that would extract the data the
user wants. In the dto layer, new objects will be created to represent new tables that the
algorithm would interact with. The service layer would be modified to be able to call on
the newly modified dao layer. Lastly new business logic will be added in the ui layer to
process the queried data. On the front end a .html file is created, following the
algorithm, to show the data and UI to the user.

3. Results

We were able to develop almost all of the features that we had initially planned

on implementing. This includes filtering by: age, diagnostic ROI, Toxicity, and Toxicity
grade during a given time period. There are also features to download the patient IDs
obtained through filtering and save and load filters applied. Visualizations of the toxicity
data are also produced(with a continuous and discrete option depending on the
measure of grade). For comparing two selections of cohorts there is a double search
option which allows for side by side visualizations of the cohorts of interest.

Figure 4. View of application with highlighted dropdown menu of options

Figure 5. Continuous search with filter tabs. Line plot of toxicity data

Figure 6. View of the Double Search with two separate toxicities. Can compare cohorts of patients differing
by specific features.

Menu Selections

Number Dropdown Name Description Filters Included:

1 Discrete Analysis Provides visualizations for discrete grade
toxicities in the form of a stacked bar
chart where the patient count for each
grade is a stacked component.

Toxicity, Age, Diagnostic ICD9,
ROI, Cohort Patient IDs,
Current Filters, Grade, Import
Filters

2 Continuous Analysis Provides visualizations for continuous
grade toxicities in the form of a line plot
where each patient is a line and the axes
are Date vs. Grade.

Toxicity, Age, Diagnostic ICD9,
ROI, Cohort Patient IDs,
Current Filters, Grade, Import
Filters

3 Double Search Provides comparison of discrete
visualizations of two separate searches
with “Copy Search” button that can
transfer the first search to the second so
that a comparison can be made on an
additional filter with the initial filters the
same.

Toxicity, Age, Diagnostic ICD9,
ROI, Cohort Patient IDs,
Current Filters

4 Search Static variable filtering that does not
provide visualizations but produces table
of cohort data.

Age, Diagnostic ICD9, ROI,
Toxicity.

5 Search Patient Age Static variable search of just patient’s
age.

Age

6 Search Diagnostic ICD9 Static variable search of just Diagnostic
ID9’s.

Diagnostic ICD9

Filters/Options

Number Filter Name Description User Specifications

7 Toxicity Ability to choose the toxicities
present in patient assessments.
First toxicity chosen has grade
filters applied to it.

Can select from table of top 30 toxicities and
choose to insert as a required filter.

8 Age Ability to filter patient cohort by
selecting the upper and lower
bounds of age.

To input values, click the integer accepting
boxes in From # To #. Where # is the integer
accepting boxes. If no values are put in, then
the filter assumes that there are no bounds.

9 Diagnostic ICD9 Ability to filter patient cohort by
Diagnostic ICD9 code.

Drag all the ICD9s from the left box to the
right box. Once search is clicked all the
patients that are left contain data for that
ICD9 code. (AND)

10 ROI Ability to filter patient cohort by
Regions of Interest.

Drag all the ROIs from the left box to the
right box. Once search is clicked all the
patients that are left contain data for that
ROI. (AND)

11 Cohort Patient IDs Provides a table of patient ID’s
present in current cohort.

Gives options to download patient ID’s into
.xls, pdf, .xml or .csv files.

12 Current Filters Provides a view of all the
currently applied filters in the
cohort and to export the filters.

User can view the currently applied filters
and click a button exporting the filters into
.xls, pdf, .xml or .csv files.

13 Grade Ability to filter the toxicity by
grade for a specific time period.

Discrete: ​3 sections for each of the different
periods(First Entry, Highest Entry, Last
Entry) with 2 integer receiving boxes of
grade upper and lower bound
Continuous:​ 2 sections, the first for
specifying upper and lower bound for grade,
the second for specifying upper and lower
bound for date

14 Import Filters Provides opportunity to import
previously exported filters.

Select upload button and select from local
files the downloaded .xml file of exported
filters.

Figure 7. View of Import Filters selection tab with information from imported file visible.

4. Significance

The resulting interface is significant as the database has largely untapped
potential in improving patient care and research goals. Given the UI developed in the
project, clinicians can use the large amounts of data they have to obtain a patient cohort
similar to their current patient. This data on patient cohort can be used to anticipate
expected outcomes. Researchers can use the UI developed in this project to easily

explore the data for interesting patterns or relationships between variables. Age,
toxicities, and regions of interest can be examined in new ways with the severity of
outcomes quickly visualized. Knowledge of SQL and query calling is no longer
necessary with our implementation, expanding the population of those able to analyze
database of information and the population of those who can benefit from its results.

5. Management Summary

5.1. ​Who did what?

Keefer Chern: Built UI Framework, developed frontend selections and visualizations,
connected developed frontend to backend.

Domonique Carbajal: Managed documentation of features, developed SQL algorithms
for data extraction from backend

5.2. ​What was accomplished vs planned?(Our Deliverables and their
status)

Minimum: ​Develop SQL algorithm allowing for static variable(age, race, gender,
diagnosis) selection of cohort with code and documentation. Framework setup for the
implementation of the UI.

Status: Completed
Expected:​ Algorithm for longitudinal variable (duration/onset of symptoms)

selection of cohort with code and documentation. Creating a UI for static variable cohort
selection along with code and documentation.

Status: Completed
Maximum:​ Algorithm for derived variable selection of cohorts with code and

documentation. Query saving and loading and UI for longitudinal variable Cohort
Selection implementation along with code and documentation.

Status: Completed (with exception to Derived algorithm as the pertinent
information was not able to met and discussed over given limited final timeline and
scheduling conflicts)
These are the updated deliverables presented in our Midterm Presentation.

5.3. ​Possible Future

Future improvements include development of grade filters for multiple toxicities,
filtering from interaction with visual, filtering of other variables we were not given access
to, and exploration of derived variables. After usage by oncologists and radiologists,
their feedback could help improve the tools by adding other visualization and analysis
features. Lastly, an extension of the application to mobile devices. Keefer hopes to
continue working on the project in the future.

5.4. ​Lessons Learned

We obtained a significant amount of knowledge from working on this project and
presenting our progress to an audience. This project allowed us to gain experience
working with SQL, JSF, HTML, developing web frameworks, and connecting to
databases. The process and importance of documentation, specifically as a planning
tool, was something that we utilized as a team and led to a more thoroughly developed
interface. We have honed our presentation skills from receiving feedback from
Professor Taylor and have a better understanding of the best forms to present technical
information to an audience.

6. Acknowledgement

We would like to thank Dr. McNutt and Pranav for their amazing guidance and
support for this project. Thanks to their vision and direction we were able to create a
interface that would provide the most use to clinicians. Thank them for continued
patience in helping to establish connection to the database and forming visualization
recommendations to guide us. We would also like to thank Professor Taylor whose
critics helped develop our presentation skills and performance.

7. References

Mayo, Charles S., et al. “The Big Data Effort in Radiation Oncology: Data Mining or

Data Farming?” ​Advances in Radiation Oncology​, vol. 1, no. 4, 2016, pp.

260–271., doi:10.1016/j.adro.2016.10.001.

Mcnutt, Todd R., et al. “Needs and Challenges for Big Data in Radiation Oncology.”

International Journal of Radiation Oncology*Biology*Physics​, vol. 95, no. 3,

2016, pp. 909–915., doi:10.1016/j.ijrobp.2015.11.032.

Mcnutt, Todd R., et al. “Using Big Data Analytics to Advance Precision Radiation

Oncology.” ​International Journal of Radiation Oncology*Biology*Physics​, vol.

101, no. 2, 2018, pp. 285–291., doi:10.1016/j.ijrobp.2018.02.028.

