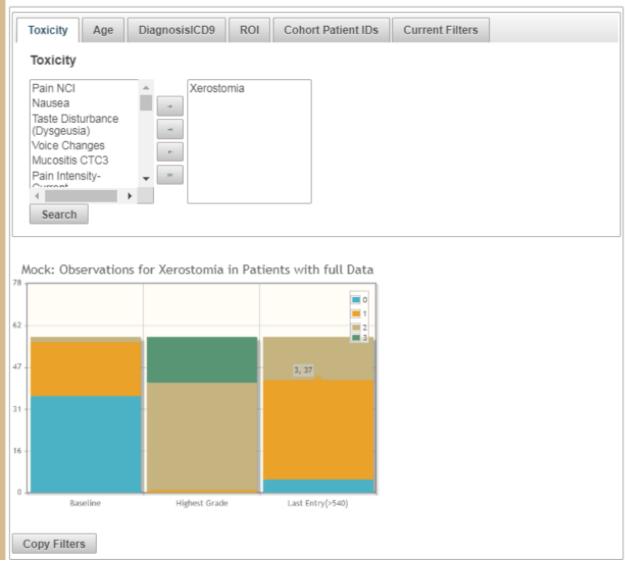
# **UI for Radiation Therapy Cohort Selection**

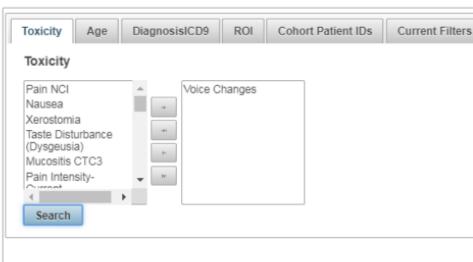
**Computer Integrated Surgery II** 

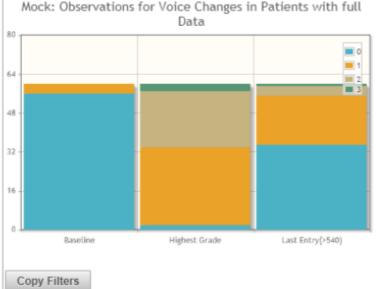
**Spring, 2019** 

**Domonique Carbajal and Keefer Chern** 

Mentored By: Dr. Todd McNutt and Pranav Lakshminarayanan





## Introduction

- We have developed a User Interface to easily create cohorts of patients from a database(Oncospace) of patients undergoing radiation therapy.
- We worked specifically with Head and Neck patient data (1,550 patients) with up to 6 years follow up data
- Variables of interest include *static variables* such as : Age, Diagnosis (ICD9), Regions of Interest
- Longitudinal variables of interest included toxicities and their accompanying grade and date.
- Our project hopes to aid the application of big data in

#### Double Search







improving the outcomes of patient care and research

Figure 3: Ability to compare two separate cohort visualizations with a double search

## **The Problem**

• This data can be used for a significant amount of applications in regards to research and clinical care. Decision support includes toxicity prediction, data-driven quality control, and treatment adaptation. Research applications for this data include performing clinical trials and answering biological questions.

• Gaining all the benefits from the data available requires an easy to use system that can relay the information desired in a comprehensive format.

• On the Oncospace site their only exists a Free Text SQL Query as means of selecting cohorts which does not standardize means of selection and requires knowledge of language

## **Our Implementation**

• Framework written in Java and Html utilizing JSF and Hibernate to connect to backend.

| Iome Static Variables - |                                  |
|-------------------------|----------------------------------|
|                         | Search Patients                  |
|                         | Enter Age Range.<br>From: 20 To: |

## **Design Details**

#### • Toxicity

• The grades of toxicities are continuous and discrete and can be visualized in a stacked bar chart or line plot

#### Regions of Interest

• Multiple ROI's can be select to ensure patients have that included in one of their representations at least

### • Age

Can be set between two specific values

#### ·ICD9

- Can give list of code the to filter patients by
- Double Search
  - Perform separate searches, use visuals as comparison
- Import/Export
  - Save patient cohort data into multiple forms
  - Export specific filters performed as text file/can import

## **Future Work**

- Calculations of derived variables (area of region of interest eradiated to certain amount)
- Option to bifurcate on specific variable for comparison within visual
- Graphical Selection of new search parameters for data exploration
- Extension of application to mobile



Figure 1: Image of static variable selection that produces patient data



### **Lessons Learned**

• Familiarization with data is key component to being able to implement effective solution and code

Documentation can be tool in development and planning

## Credits

Domonique Carbajal: SQL background commands and documentation management

Keefer Chern: Main frontend programmer and frame development

## Acknowledgements

Oncospace and JHMI

• Thank you to Dr. McNutt and Pranav for their support and vision in developing this project.

Engineering Research Center for Computer Integrated Surgical Systems and Technology

