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Abstract

Although large volumes of information are entered into our electronic health care records, radiation
oncology information systems and treatment planning systems on a daily basis, the goal of
extracting and using this big data has been slow to emerge. Development of strategies to meet this
goal is aided by examining issues with a data farming instead of a data mining conceptualization.
Using this model, a vision of key data elements, clinical process changes, technology issues and
solutions, and role for professional societies is presented. With a better view of technology, process
and standardization factors, definition and prioritization of efforts can be more effectively directed.
Copyright ª 2016 the Authors. Published by Elsevier Inc. on behalf of the American Society for
Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

It should be common for clinics to have the ability to
rapidly assemble datasets to address practice quality
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improvement (PQI), routine clinical translational research
(CTR), and other arising questions to aid patients in our
clinics today. We enter a wealth of information into
electronic health records (EHR) and radiation oncology
information systems (ROIS) on a daily basis. Shouldn’t it
be the rule, rather than the exception, that clinics can
seamlessly use this information to carry out tasks such as
identifying the cohort of patients with a particular diag-
nosis and stage who were treated with specific
of the American Society for Radiation Oncology. This is an open access
by-nc-nd/4.0/).
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technologies (eg, volumetric modulated arc therapy,
breath hold) and examine the correlation of their survival
and toxicities with dose delivered to target and organ-at-
risk structures? We think it should be.

In addition, a wide range of analytics uses becomes
viable, extensible, and automatable as availability of
large, electronically gathered, comprehensive health care
datasets emerge. Modern analytics approaches, such as
machine learning, are poised to satisfy the promise of
identifying and guiding response to factors affecting pa-
tient outcomes; however, these methods are more data-
needy than ever. Moreover, broadening the scope of data
elements to other departments within a single institution or
to pooling data from multiple institutions is needed for
development of realistic, comprehensive models of routine
practice. Increased ability to participate in clinical trials and
improved reporting and feedback mechanisms are crucial.

Reaching the goal of prospective automated, electronic
incorporation of evidence-based decision support extrac-
ted from retrospective experience back into clinical and
research efforts is a multi-level effort. Figure 1 illustrates
4 system tiers in constructing applications to support
knowledge guided radiation therapy. Obtaining these
analytics tier products depends on the ability to supply
large volumes of useful data on a wide range of elements
to their engines.

Reports focused on technologies or large-scale
efforts highlighting the potential benefits of local and
multi-institutional efforts are inspirational, but may
Figure 1 The systems required for construction of a knowledge-g
reporting, and participation in trials and other clinical efforts can be c
aggregation tiers enable the benefits of the analytics tier. The integratio
are used.
make their realization seem distant and unapproachable
for most clinics.1-9 Making local, routine use a reality
and setting the stage to leverage machine learning and
other analytics tier objectives require a multifront
approach involving multiple data systems, changes to
clinical processes, standardization, and database tech-
nologies to make more data available and accessible.
Details on clinical experience with the foundational tiers
could promote wider participation and more availability
of multi-institutional datasets.

Recently, we have built on prior experience10-18 to
construct a University of Michigan instance of a Radiation
Oncology Analytics Resource (M-ROAR). It reduces in-
formation entropy by aggregating keymultidisciplinary data
elements from the clinical/research tier into a single system
in the aggregation tier, encompassing an expanding range of
key data elements; it currently contains data for w17,000
patients treated with radiation at the University of Michigan
since 2002. By better framing our view of the current issues
and tasks involved, our ability to leverage limited resources
to develop solutions was improved. Our purpose in this
manuscript is to share our vision of the issues, solutions, and
key data elements that need to be addressed.
Data farming vs data mining

The standard conceptualization of data aggregation and
analysis efforts is termed “data mining.” Unfortunately,
uided radiation therapy system that supports machine learning,
onceptualized in 4 tiers. The foundational clinical processes and
n tier promotes interoperability even when multiple technologies
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this creates a misleading expectation that the data ele-
ments needed already exist in electronic systems and are
just waiting to be “mined” (ie, found, extracted, and used
in the analysis tier). Moreover, it assumes data are suffi-
ciently curated to allow for accurate linkage to patients,
identification of relationships among data elements, and
extraction of reliable values. Embracing this conceptual-
ization can lead to being overly receptive to promises for
shiny new and eclectic technologies that are nominally
able to pick through any “load” of the data in our ROIS or
EHR to be able to meet all of our needs. Often, both the
price tag and the level of dependence on these “one-of-a-
kind” solutions are high. Moreover, detailed understand-
ing of what key data elements are needed, how to accu-
rately retrieve them from existing systems, and what
clinical processes need to be addressed to fill in gaps in
the data is frequently low.

Data farming is a more realistic and functional
conceptualization for shaping expectations of the type of
work and commitment needed to construct reliable data-
bases supporting practice quality improvement and clinical
translational research (Fig 2). The objective is to harvest
large volumes of data that we could use as raw materials
Figure 2 Farming is a useful metaphor for envisioning th
for analyzing health care patterns and outcomes. Like the
farmer who considers the implication of every part of the
sowing, growing, and harvesting process on the yield of
high-quality grain, we need to examine how best to use the
tools available in our electronic systems to increase the
volume of actionable data that are readily available. High-
quality data sources rarely exist independent of our efforts,
just waiting to be found, or mined. They result from intent
and dedication of resources to grow these data sources and
curate (weed out) misleading information.

A data farming conceptualization also helps highlight
5 of the Big Data “Vs” we have found to be prominent in
technology and process discussions in radiation oncology.

� Variability: Various given data types (eg, weight,
laboratory values, dose-volume histogram [DVH]
curves) may need to be aggregated from multiple
sources based on criteria such as time range, stake-
holder group, or vendor. Differences in location, ac-
cess requirements, storage technology, nomenclature,
formatting, units, and data quality contribute to
complexity of extract, transform, and load (ETL)
operations.
e issues in creating outcomes databases in health care.
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� Veracity: Incorrect data values or missing data un-
dermine the ability to draw accurate statistical con-
clusions about distributions of values and
relationships between data elements. Many PQI and
CTR efforts focused on data at the outer range or even
in the tails of distributions where the “law of aver-
ages” cannot wash out errors.

� Volume: Storage and processing requirements for data
elements can drive technology decisions when very
large (eg, >1 Pb). Thresholds for this classification
evolve rapidly as technologies progress.

� Velocity: Data input stream rates can drive technology
decisions when very large (eg, >1 Tb/s). Processing
speeds for the system of analytics, interface, and ag-
gregation tiers drive tractability of incorporating ana-
lytics into clinical process flows. Thresholds for this
classification evolve rapidly as technologies progress.

� Value: Implementation of Big Data solutions has high
costs: financial, technical, staffing resource allocation,
process change, and political capital. Obtaining
needed support depends on addressing cost vs benefit
to PQI and clinical translational research efforts.

Blog postings for generalized Big Data discussions
sometimes cite a “variety” of information/data types as an
issue (eg, Facebook postings, Twitter feeds, image data,
video data). Because key data elements are generally part
of the EHR, ROIS, or treatment planning system (TPS),
we have not found variety to be a driving issue for the
specific case of radiation oncology.

Planting in spaced rows: Ensuring availability
of key data elements

Big Data efforts in radiation oncology are challenged
by high degree of variability in data types and sources, in
both format and quality. Data elements are distributed
among the ROIS and EHR across additional discipline
specific (eg, pathology, chemotherapy, surgery, genetics)
databases and in spreadsheets. The number of databases,
versions, and quality caveats multiply as extractions
reach further back into the historical record. Key data
elements may not be routinely recorded as part of our
clinical processes or are recorded in a format that makes
eventual retrieval unlikely or very cumbersome. When
information structuring is highly uncertain or only
sparsely available, its value is compromised by the
expense, complexity, and effort needed to accurately
extract it.

In farming, the concept of a row as a process organi-
zational principle was fundamental to improving effec-
tiveness and enabling development of industrialized tools.
The same principle applies to radiation oncology. Struc-
turing routine practice processes to improve availability
and accuracy of key data elements for automated,
electronic extraction increases the volume of data avail-
able and reduces the cost of aggregation.

Where do we need to focus our efforts and what should
we do? Table 1 lists key data element categories and
characterizes challenges to aggregation of the informa-
tion, ranking difficulty of ETL operations. Categories are
ranked according to demand as elements of frequently
requested PQI and CTR queries. Treatment details
generated by the ROIS are typically available. In contrast,
many highly ranked elements have multiple ETL chal-
lenges. For example, staging and outcomes data input are
variable, and clinics frequently use free text entry in EHR
notes instead of availing themselves of quantified fields in
ROIS and tools to define linkages of metastatic to origi-
nating site diagnosis. We need to change multidisci-
plinary/provider processes to take advantage of data
structuring tools already built in to the ROIS, TPS, or
EHR to enable automated extraction with little expense.
Better practice processes Z better planting and thus a
better harvest!

Missing data can be a problem. For example, recur-
rence and toxicity information are often entered into the
EHR as free text notes because it is the fastest means of
proceeding with the demands of a busy clinical day. The
result of not using standardized inputs, including stan-
dardized “free text” formats (eg, smart lists in Epic EHR),
is that accurately extracting information to define
actionable statistics requires manual rather than electronic
approaches. As a result, it is rarely done as part of routine
practice for all patients.

Note that reliance on eventual emergence of natural
language processing (NLP) methods as a catch-all,
promising to eliminate need for any manual effort,
leads to highly uncertain timelines for projecting when
key data elements will be accurately extracted and
available. Use of NLP as a filter, to augment manual
efforts, is gradually gaining traction. Fully automated
extractions, demonstrating high accuracy across a range
of key elements, are areas of exploration. In the mean-
time, practice changes to use standardized, quantified
entry of key data elements; enables gathering the data
now; and will enhance the accuracy and reduce costs
of NLP methods when they evolve in the future. For
M-ROAR, our clinical practice committee reviewed the
options and is overseeing the transition to the use of
discrete fields in the ROIS for entry of staging data and
use of quantified field objects (flow sheets in 1 EHR
system) for toxicity data and recurrence.

Standard row spacing: Professional society-
driven standardizations

Development and use of process standards promote
ability to develop automated methods to aggregate key
data elements for all patients. Standardizing definitions of



Table 1 Categorization of key data element categories and summary of our experience of challenges to extract, transform, and load (ETL) of data from source systems to aggregation
tier.

Key element
category

Demand
ranking

ETL
difficulty

Typical
source
systems

Access Multiple
source
systems

Use or
used free
text entry

Missing
data

Data
accuracy

Lack of
standar
dization

PHI
constraints
limit
access

Legacy
formats
or
systems

Require
process
changes

Extensive
transformation

Other

Demographics C 1 L EHR � E
Health status factors 2 L EHR � E
Pathology 1 3 M to H EHR � � � � � @ E, X
Surgery 1 2 M to H EHR � � � � � @ E, X
Chemotherapy C 2 M EHR,

ODB
� E

Encounter details C
Office, emergency
room, hospitalization

3 L EHR @ � R

Diagnosis C, , 1 M EHR,
ROIS

� � � � @ R, E

Staging C, , 1 H EHR,
ROIS

� � � � � @ E

Prescription ,A 1 H ROIS,
ODB

@ � E, X, R

As-treated
plan details C

1 M ROIS �

DVH C, ,A 1 M TPS � � � @ � ATPS
Survival C 1 M EHR,

XLS,
ODB

� @ UD, E

Recurrence , 1 H EHR � � � � � @ E, X
Toxicity C, 1 H EHR,

ROIS
� � � � � @ E, X

Patient-reported
outcomes

2 H EHR, P � � � � @ E, X

Laboratory
values C

2 M EHR @ � � E

MedicationsC 2 M EHR @ � � E
Height, weight,
BMIC

2 M EHR @ � � E

Treatment imaging:
Timeline
detailsC

3 H ROIS � R
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Diagnostic imaging
details 1

3 M ODB @ � � �

Radiomics 1,A 3 L XLS � @
Genomics 1 3 L XLS � @
Charges C 3 L ROIS
Research
datasets 1

4 H XLS � @ � � E

Registry data 1 4 M ODB @ � � � UD

Demand ranking ranges from most (1) to least (4) frequently needed as part of queries. Range in ETL is specified when significant variation among institutions is anticipated; extensive transformation
indicates need to construct sophisticated algorithms to process raw data from source systems to provide needed information.
APTS, special manual effort needed to construct as-treated plan sums; BMI, body mass index; DVH, dose-volume histogram; E, manual entry without process corrected curation are susceptible to random or
system-related systematic errors; HER, electronic health records; ETL, extract, transform, and load; H, extensive process changes needed, data typically in unstructured free text fields; L, little modification
required; M, changes to clinical processes required, interactions across different groups in the institution, significant computational processing; M-ROAR, Michigan Radiation Oncology Analytics Resource;
NLP, natural language processing; ODB, other database systems; P, paper records; PHI, Patient Health Information; R, missing detail on key relationships to other data items; ROIS, radiation oncology
information system; TPS, treatment planning system; UD, data values not being up to date; X, manual effort required to extract data; XLS, spreadsheet.
M-ROARespecific ETL status for all patients: C, current processes enable capture for all; 1, developing new extractions; , exploring NLP-based process; , piloting new clinical process; A, developing
new software applications to improve availability or accuracy; , developing extractions for legacy data with differing formats. The current database includes 17,956 patients treated since 2002. Records per
patient vary with time period and key data element category.
�, specific ETL challenges; @, the primary issue for enabling automated extractions for multiple issues.
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key elements for treatment details, DVH metrics, toxicity,
and patient-reported outcomes, segregated by disease site,
that are recommended to be made available for automated
extraction for all patients would aid in defining common
practice.

Ideally, this standardization would be carried out
with the combined effort of stakeholder societies (eg,
American Association of Physicists in Medicine [AAPM],
American Society for Radiation Oncology, European
Society for Radiotherapy and Oncology, Southeast Asian
Radiation Oncology Group) as part of data aggregation
projects. Defining standards provides incentive for
aggregating the information and for facilitating the ability
of vendors to meet the defined need. For example, the
AAPM Task Group 263 e Standardizing Nomenclature
for Radiation Therapy has defined standards for naming
of target and organ-at-risk structures and DVH metrics to
facilitate the ability to automatically extract and analyze
key data elements from DVHs.

Beginning with a small, core set and gradually
expanding as use in multi-institutional collaborative data
efforts demonstrates the value of adoption keeps the focus
for success on volume of data harvested. Collaborative
efforts to define standards that vendors can apply are
important for developing common solutions that will ul-
timately increase pooling of federated datasets.
Cash crops: Defining key data elements in
radiation oncology

Key data elements need to be quantified and prioritized
to direct aggregation efforts. Arbitrarily increasing the
number of data items gathered as part of clinical processes
can have a high time cost for individual clinicians and other
staff. Identifying subsets of data elements with high value to
PQI and to CTR efforts, is an important starting point.

We used a combined approach to define key data
elements and categories incorporated into M-ROAR.

� Suggestions from clinicians and staff formed from
their research and PQI experience.

� Examination of recent queries from the ROIS and
EHR systems to support PQI and research efforts.

� Faculty surveys of questions for which they wished to
use M-ROAR to address and deconstruction of re-
sponses to identify data elements and relationships
required to meet those needs.

Identification of key data elements is not a fixed or
one-time effort. It requires working with many stake-
holders and recognition that these identifications may
change or evolve over time.

Table 1 highlights categories of key elements that
are common to a wide range of queries (eg, staging).
The categories and elements continue to evolve as new
capabilities lead to new queries and exploration of new
data sources. The detailed list of specific elements is
available upon request. They form the basis of radiation
oncology translational research ontology. Standardizing
radiation oncology translational research ontology as a
joint effort of professional societies (eg, AAPM, Amer-
ican Society for Radiation Oncology, European Society
for Radiotherapy and Oncology, Southeast Asian Radia-
tion Oncology Group) using this and other existing on-
tologies6,8 as a starting point would support long-term
efforts to support multi-institutional research by defining
a baseline of information and tools for information
exchange. Ontologies will see wider utilization as part of
vendor and institutional systems as they improve in detail,
standardization, usability, and depth of information on
data elements and interrelationships. Proactive engage-
ment by professional societies will hasten this timeline.
Awareness by task groups and working groups of impli-
cations of secondary effects from their efforts on facili-
tating Big Data aggregation is important to expand the
range of information available (eg, AAPM TG174).

Careful consideration of the value of extracting and
storing raw vs distilled information is needed and may be
hotly debated. For example, recreating the functionality of
picture archiving and communication systems to store pixel-
based information for image series may not be as productive
as developing automated access and processing capabilities
to extract and store distilled features (eg, radiomics metric
values, image access, characterization data). Raw genomics
information, free text data, and dose arrays are similar ex-
amples encountered in these debates. Distilled data requires
lower volume and may have higher value (cost/benefit) if
provenance of the raw data is also recorded to preserve the
ability to trace the raw source data for review.

To harvest you first have to plant: Ensuring
key elements are present in the records

Much is known about the relatively small (w5%)
number of patients on clinical trials that systematically
quantifies key data elements for participating patients. For
the majority of patients, who are not treated on clinical
trials, much less is known. Often, key data elements are
simply not entered into the record as a part of routine
practice because they are not required. Clinics should
identify core key data items that are vital to their objec-
tives that can be entered using existing tools in the EHR,
ROIS, or TPS. Typically, these will include the following.

� Basic disease details: diagnosis, staging, laterality,
stratification factors.

� Basic outcomes measures: survival, recurrence,
toxicity.

� Course composite dose data. This requires routine
creation of As Treated Plan Sums showing composite
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doses of initial plan, boosts, and plan revisions.
Automated extraction of DVH metrics, reflecting the
full treatment course, is significantly undermined
without creation of As Treated Plan Sums as part of
clinical practice.

� Prescriptions. A tabulated summary should reflect
the fractionation groups (eg, initial plan, boosts, plan
revisions), the gross tumor volume, clinical target
volume, and planning target volume structures treated
to differing dose levels as part of those fractionation
groups, and sequential use of multimodality treat-
ments (eg, external þ brachytherapy).

� Chemotherapy details. Agents used, because delivered
infusion schedules.

Patient-Reported Outcomes (PRO) also fall into this
area but require much more substantial changes in pro-
cess, staffing, and development of technical resources to
ensure routine collection of these data. In addition,
because electronic PRO systems are deployed to reach
patients outside of the clinic, additional coordination with
information technology and compliance offices to protect
patient health care information is required.

Weeding: Building data curation in practice
processes

Reliability of manually entered data elements in the
absence of proper curation incorporated into clinical
processes is frequently a problem for the veracity of these
datasets, requiring local expertise to assess and correct
issues. The notion that noisy or inaccurate data (“dirty
data”) values are acceptable because large volumes of
correct data will wash out their effects undermines the
ability to carry out cohort discovery for rare combinations
of factors that might be most relevant. Unchecked, dirty
data can lead to “garbage in - despair out” as confidence
in the value of big data efforts erodes willingness to
participate in practice changes.

For example, random errors compromise accurate
characterization of integer counts of events when the
incidence rate is low compared with the error rate.
Manual entry errors or omissions for high-grade toxic-
ities reduce ability to develop automated solutions to
characterize distributions and correlate to contributing
factors. Frequency of systematic errors and likelihood of
missing data for core key data elements (eg, diagnosis,
staging, laterality) undermine development of reliable,
automated analytics. For example, systematic errors for
patients treated for metastatic disease, by use of Inter-
national Classification of Diseases codes for originating
site (eg, prostate, breast, lung) instead of the correct
International Classification of Diseases codes for the
secondary site (eg, bone, lung, brain), or omitting
connection between the two weakens accurate automated
identification and characterization of treatment technol-
ogies used for these patients.

In farming, it is never possible to eradicate all weeds.
Instead, applying sufficient effort so that the weeds do not
overwhelm the grain is needed. In clinical processes, it is
important not only to minimize noise, but also to have
strong methods in place to identify major outliers and
errors that could have a big impact on analysis. A prac-
tical approach to building curation into routine practice is
needed to find a mean between requirements so burden-
some to clinical processes that they reduce ability to
obtain needed data and those that are so lax that they
undermine ability to automate, accurate extraction, and
analysis of data. Incorporating curation into clinical pro-
cesses with a focus on high-priority data elements subject
to manual entry errors (eg, recurrence type) or having low
tolerance for random errors for values at the margins of
distributions (eg, rare diseases, toxicities) is productive.

For example, peer review of diagnosis and staging as
part of chart rounds or review of treatment plans enhances
the accuracy of the data. Assuring compliance with
nomenclature standards for target and organ-at-risk
structures and the existence of “as treated” plan sums
dramatically increases the reliability of automated pro-
cessing of DVH data. Creation and review of monthly
reports of toxicity values aid in weeding out incorrect
values and minimizing missing values.

With loading of regularized data into data resources
(Structured Query Language [SQL] or NoSQL) and in-
clusion of provenance information traceably linking to
source systems, development of electronic algorithms to
identify inaccuracies or missing data becomes plausible.
Care must be taken with electronic fixing of data to
avoid introducing bias or additional errors. This requires
detailed understanding of clinical processes that produced
the errors. For example, replacing missing toxicity values
with grade 0 will skew comparisons of physician practices
that systematically do not enter data for grade 0 vs oc-
casionally neglecting to enter toxicity values for low
grades.
Farming villages: Staffing resources and
collaborations

Building an outcomes database is a community effort.
Defining key data elements, gaining access to data sour-
ces outside the department, identifying and implementing
optimal processes that align clinic flow with data objec-
tives, and using the data in PQI and research require
combined efforts of all staff member groups in the clinic.
Physician, physics, dosimetry, therapist, nursing, admin-
istrative, and information technology staff groups all play
multiple roles in the work. Providing encouragement,
time, resources, and support for the members of the team
motivated to build and apply a working system in the



Figure 3 Evolution of practical Big Data systems progresses from smaller highly skilled groups to large vendor-based systems as the
multidisciplinary village of staked holders (physicians, physicists, administration, RTT, dosimetry, nursing) finds and demonstrates
value for these systems. Value drives willingness to modify clinical practices to reduce data variability.
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clinic increases likelihood of success in constructing a
system that works for all. Gathering new data such as
PROs requires investment in new staff to assist patients in
setting up electronic portal accounts and initial navigation
of electronic completion of surveys. Cross-departmental
collaborations, leading to integration of aggregation
processes and systems, are needed to form complete
pictures of patient care (to make a meal, we need more
than one crop).

Figure 3 illustrates phases of development for creation
of Big Data systems. Phases progress as the size and di-
versity of the village of contributors to the effort grows.
Growth is fueled by demonstrations of value for research
and PQI. Presently, most efforts are in the pioneering or
demonstration of value phases. Transition to availability
of viable, cost-effective, vended solutions is anticipated
with demonstrations of value for use of Big Data in the
clinic.

Multi-institutional collaborations, leveraging pooling
of data to explore outcomes effects that are robust against
practice variations, are important for lowering technical
barriers and cost. They provide needed small-scale use
cases for identification and proof of concept solutions for
standardization, technology, practice, and policy issues
that lead to viable large-scale approaches for health care.
Integration of federated, multi-institutional data sources
promotes better ability to develop evidence-based health
care policy and analytics (to feed the world, we need a lot
of farmland). These efforts provide collateral benefits to
institutional objectives for improving quality and
reducing cost. Health systems should be proactive in
enabling these efforts through data use agreements,
working with data compliance offices to standardizing
secure server systems for federated exchange, and finan-
cial support.

Prioritizing demonstrations of value to PQI and
research as new data elements are added builds commu-
nity support and provides additional channels for feed-
back on key data elements and for curation. For example,
the self-service dashboard illustrated in Figure 4 for pa-
tient cohort identification has the collateral benefit of
highlighting issues with incorrect diagnosis codes.



Figure 4 A self-service dashboard from M-ROAR illustrating high-velocity output from a large volume of data, value for supporting
PQI, and research effort and means to improve veracity by bringing the consequences of “dirty data” directly into the view of end-users.
PQI, practice quality improvement.
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Farm machinery: Approaching technologies
for radiation oncology big data

There are a large number of database classes and
specific solutions in various stages of maturity to choose
from for aggregation. Existing technologies destined for
longevity evolve to adopt the best ideas of new technol-
ogies. Attempting to pick “the best” in this churning
landscape may have uncertain outcome.19 Picking one
that allows focus on progress in aggregating and
analyzing the data with existing resources while also
investigating strengths and weaknesses of alternative
technologies provides a better mix for addressing both
near-term needs and long-term vision.

Evaluation should include performance with realistic
domain applicable datasets. Although high-velocity data
input streams are typically not an issue, high speed in
retrieval and analysis is for defining practical approaches
to incorporate the data into clinical processes. Use real-
istic datasets to evaluate:

� performance of query operations
� ability to integrate into existing systems to carry out
ETL operations

� ability to integrate into development of clinical ap-
plications to use the data in practice

� ability to interact with standard analytics or machine
learning systems

� implications for availability of staff required to
implement the technology

� longevity
� cost (hardware, software, training, staff, time).

Our SQL data lake, which is used to stage multisource
data for incorporation into M-ROAR, is currently 87 GB.
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The production version MS SQL database of M-ROAR
that aggregates data for >17,000 patients treated since
2002 is currently 9 GB. The architecture is designed to
allow the database to be refreshed periodically within a
few hours. Reporting velocities are suitable for routine
use. Benchmark queries combining multiple inner joins
(intersections of datasets) and right outer joins (unions of
datasets) over thousands of records in several tables
(complex datasets) to stress the performance execute in
less than 2 seconds. Examining the most recent 20
research query requests, each executed in less than 0.03
seconds and produced between 200 and 3500 records.
Self-service reporting tools (Fig 4) allow users to sort over
the full set of patients for cohort discovery in less than 1
second. So far, availability of time, resources, and access
have been the rate-limiting factors for growth, not lack of
use of visionary database technology.

Typically, the Big Data thresholds that challenge
conventional technology paradigms are volume (eg,
petabytes) or velocity (eg, terabytes/sec). For example,
storage for genome sequences of w200,000 patients or
sequence transmission rates of w200 patients/s reach
these thresholds. Wide-scale availability of genomics data
for all patients or use cases requiring storage of individual
imaging or dose array pixels may eventually emerge to
affect decisions on key data elements for routine aggre-
gation. However, it is reasonable to anticipate emergence
of a different landscape of database technologies before
volume or input velocity thresholds become limiting
factors that are more dominant for radiation oncology.

We anticipate that speed and maturity of query and
analytics technologies (output velocity) will be important
limiting factors as federated, multi-institutional databases
emerge as part of routine research and clinical practice.
Application of column/graphical store databases or use of
high-capacity in-memory architectures to support faster
queries will become more common as available data
volumes catch up with potential.

Incorporating statistical analytics into database solu-
tions to construct queries that are more sophisticated is
emerging as a defining characteristic. For example, MS
SQL 2016 will include incorporation of the open-source
statistical platform R into the database server software.
Similarly, availability analytics and reporting tools that
function with a wide range of database technologies to
improve end-user visual access (eg, Tableau) will be an
increasingly important selection factor.

Differences in optimal characteristics of database
technologies for aggregation vs analytics point away from
one-size-fits-all solutions. For example, as aggregation
systems emerge to allow rapid extraction of key elements
from multiple source systems, their use to feed graphing
databases (eg, Triple Store) in distributed analytics ex-
plorations of interactions among subsets of elements will
have wider applicability for machine learning in both
single- and multi-institutional efforts.6
Incorporation of high-performance encryption and
watermarking technologies as part of routine practice to
ensure security and data integrity for both institutional
systems and for cloud-based systems is needed. Definition
of data approaches that meet compliance and security
standards and facilitate the ability to use cloud-based
multi-institutional data pools containing key elements for
longitudinal analysis are closely coupled to viability of
these technologies.

Collaborating to find solutions to legal, policy, and
security barriers to use of cloud-based systems to share
database solutions with collaborators particularly as the
volume of the data continues to grow is part of research in
this area. As those solutions are developed, technologies
that integrate well both with cloud-based architectures and
enterprise source systems will have favorable cost
(financial, staffing, space)/benefit ratios.
Summary

The vision for efforts required to make routine use of
Big Data a part of clinical reality in radiation oncology is
similar to the vision for creating a productive farm
yielding large volumes of high-quality grain. We are both
the consumers and the producers of the yield that serves
to help us improve patient care. Farming cultures evolved
their processes and technologies from sufficient for sub-
sistence to enabling large-scale automation. An analogous
evolution in radiation oncology data is within reach. It
requires community effort leveraging the skills, insights,
and data use needs of all clinical and information tech-
nology staffing groups as well as professional societies.

Cooperative development and adoption of standardi-
zations by vendors and clinics to increase volume and
availability of datasets created as part of routing processes
is a vital part of that community effort. Engagement by
government as part of these communities is needed to
overcome barriers to combining these datasets so that the
information learned through treating patients today can be
used to improve treatments and health care policies for the
patients of tomorrow.
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