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Summary

The conceptual model for
decision support versus dis-
covery with big clinical data
analytics is different, and an
overview of the implications
of these differences is dis-
cussed in the context of pre-
cision medicine.
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Big clinical data analytics as a primary component of precision medicine is discussed,
identifying where these emerging tools fit in the spectrum of genomics and radiomics
research. A learning health system (LHS) is conceptualized that uses clinically ac-
quired data with machine learning to advance the initiatives of precision medicine.
The LHS is comprehensive and can be used for clinical decision support, discovery,
and hypothesis derivation. These developing uses can positively impact the ultimate
management and therapeutic course for patients. The conceptual model for each use
of clinical data, however, is different, and an overview of the implications is discussed.
With advancements in technologies and culture to improve the efficiency, accuracy,
and breadth of measurements of the patient condition, the concept of an LHS may
be realized in precision radiation therapy. � 2018 Elsevier Inc. All rights reserved.
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Introduction

The goal of precision medicine is to improve overall patient
care and determine when and how to personalize patients’
treatments. Currently, this is guided by a physician’s un-
derstanding of the patient’s condition by drawing from the
physician’s experience to align the specifics of care to the
patient. Guidelines (1, 2) assist in the overall pathways for
specific diseases, but for the most part, precision medicine
is performed with finer granularity than the guidelines
provide.

A learning health system (LHS) (3-5) is a concept where
quantifiable diagnostic, treatment, and outcome data are
captured from a continuous stream of patients and placed in
a knowledge base. Knowledge is accessed by analytical
tools that use statistical and machine learning algorithms to
present trends and make predictions and causal inferences
on outcomes. As more patient data are accumulated, the
system continues to learn and improve on its models and
ability to make specific predictions for individual patients.

When evaluating the possibilities of an LHS, it is
important to recognize the difference between predictive
modeling to assist in clinical decisions and knowledge
discovery of the underlying mechanisms or causes of
particular outcomes. In decision making, we decide on the
most appropriate intervention for the patient, which may or
may not be guided by complete knowledge of the under-
lying biological mechanisms. A new discovery, however,
must uncover the biological understanding or derive hy-
potheses that may be further validated under more
controlled studies. Clinical data complement pathology,
genomics, and radiomics by providing details of the treat-
ments and outcomes of patients for the advancement of
precision medicine.
What Are Big Clinical Data?

The ability of big clinical data (6) to represent the real
world with minimal bias, to accumulate assessments over
time, to be linked with other databases, to be used and
reused, and to enable a multidimensional understanding
should all be considered to unlock the potential. Clinical
data represent prior experience from patients and are
captured through a multitude of methods, but limitations of
our current protocols and pathways result in only a small
fraction being used to make clinical decisions. For machine
learning and statistical algorithms to take advantage of the
entirety of the available data, medical records must adapt to
support continuous feature extraction. Clinical data gener-
ally have a number of complications not found in typical
cross-sectional study data sets. For example, clinical data
exist in forms of free text to 3-dimensional volumes to
structured data elements, all with longitudinal sampling.
Clinical data also suffer from selective sampling, missing-
ness, and measurement error.
Aside from lifestyle covariates, clinical data contain
patient and disease status, treatment and symptom man-
agement, clinical and quality of life (QoL) outcomes,
adverse effects, and survival. The key for enabling access is
to extract meaningful information or features and store
them in standardized ways (7).

Naturally, the level of precision in measuring outcomes
dictates the quality of subsequent clinical conclusions. For
instance, in current practice, a recurrence of a patient’s
cancer may be recorded but often without the specific
location. This limits our understanding of whether the
recurrence was coincident with the radiation treatment.
Also, the measurement of a patient’s clinical condition
depends on available time and resources. For example,
xerostomia can be scored by the clinician, evaluated
through patient questionnaires, or measured with controlled
stimulation methods, each with a corresponding increased
time and cost.

Longitudinal assessment of patient status requires care-
ful feature extraction. One can evaluate acute changes in
toxicity such as taste disturbance or mucositis during
treatment to understand a patient’s ability to cope with
treatment. Alternatively, evaluating longer-term toxicities
provides a measure of permanent damage. Time to recovery
of a particular function may also be measurable, as initial
injury likely has different causal attributes than recovery of
various irradiation-related toxicities.

Unlike standard cross-sectional studies, where treat-
ments are binary and represent case and control groups,
radiation therapy involves a 3-dimensional dose delivered
over multiple days, yet protocol standards extract simplistic
dose-volume features as efficient measures of treatment-
plan quality. Dose-volume histograms (DVHs) leave out
useful information and thus are insufficient on their own to
support precision medicine (8). A DVH assumes each
location within a region is equally sensitive to radiation and
equally responsible for biological function. Advanced
methods of extracting dose features and patterns would
enable a better understanding of the impact on patient
outcomes (9).

LHS and Predictive Modeling

A common goal of traditional statistical modeling is the
discovery of the underlying mechanisms or cause of out-
comes. Breiman (10) compared a “data model,” where a
statistical model is assumed to describe a relationship and
validated with the data, with an “algorithmic model,” where
the mathematical model that relates the input variables to
the outcomes is computationally determined through ma-
chine learning. Both approaches have benefits and flaws:
The data models are usually hypothesis driven yet may not
reflect the complexity of the true process, but they none-
theless enable improved understanding of the system. The
algorithmic models, on the other hand, are hypothesis
generating, presenting superior predictive accuracy, yet
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make it challenging to uncover the dominant input vari-
ables and/or causal attributes.

Medical information is very complex and often aggre-
gated into features that can mask important underlying
details. Such dimension reductions are necessary but risk
being insufficient. A good example is the selected points on
a DVH, where we have essentially reduced 3-dimensional
dose in a region to a single value of dose or volume. This
data reduction may have a negative impact on the ability to
build a model to predict organ function or disease control
after treatment that may have spatial dependence. It is not
easy to proactively determine whether this type of ad hoc
feature will preserve or discard useful relationships be-
tween the features and outcomes. Developing and applying
dimension reduction strategies that usefully preserve true
relationships in the data may improve normal tissue
complication models (11).

Considerations for predictive models must include the
purpose of building them, whether they are to be used for
decision support or for discovery of new knowledge. There
is more than 1 tool, and selecting the right one to apply to
the clinical question and purpose will be critical for making
more precise patient care decisions.
Decision support

The goal of decision support is to provide the most
appropriate intervention for the patient (12) and not
necessarily to discover new knowledge. This begs the
question of which outcome prediction models should be
selected with what accuracy requirement.
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The key to selecting the best performing model is un-
derstanding the decision and intervention to be made. For
example, if the intervention is to use a feeding tube to
prevent weight loss for head and neck cancer patients un-
dergoing treatment with radiation therapy and chemo-
therapy, then it may not be necessary to know what
combinations of toxicity caused the weight loss since the
intervention is intended to treat the symptom instead of its
underlying cause. Alternatively, if it is understood that, for
a particular patient, taste disturbance would likely cause
excessive weight loss, then the intervention may be to
modify the radiation treatment to minimize the taste
disturbance or to refer to a nutritionist to consult on
nutritional support.

Figure 1 depicts a framework for decision support (3)
where, at some time point in the care of a patient, a deci-
sion needs to be made. The inputs to the predictive model
include the facts about the patient and potential in-
terventions. Outcome predictions such as risk of a partic-
ular toxicity or probability of local disease control are
presented to the clinician and patient with the specific at-
tributes most influential to the prediction. These outputs
could then be used to assist the decision making, whether it
be selection of or change in the treatment course or an
intervention to improve symptoms.

An evaluation of the dominant attributes of a specific
prediction must consider an understanding of the individual
patient and the existing knowledge of underlying causes.
Predictive models often do not separate causation from
association. Thus, interventions that depend on treating a
causal attribute must consider the limitations of the pre-
dictive models.
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Fig. 2. Hypothesis generation uses predictive modeling to maximize the prediction accuracy to uncover specific features of
the patients and their treatments most correlated with an outcome. The features are derived from the raw clinical data.
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Discovery and hypothesis derivation

An LHS also provides the opportunity to extend knowledge
through discovery and hypothesis derivation. In essence,
the goal is to both understand features most predictive of
outcomes and uncover the underlying causes.

Figure 2 depicts a framework for discovery using the
LHS. The process is to find features of the patients that most
influence an outcome by generating predictive models and
cross validating them with the available data to maximize
prediction accuracy. In this approach, iterative exploration of
an unlimited set of features seeks out those that maximize
the predictive accuracy. After validation, a review of the
relevant features can support hypothesis derivation and help
uncover discoveries that can be further studied.

Aside from predictive modeling, cause-and-effect re-
lationships between features and outcomes are important
types of hypotheses and are often the most scientifically
relevant. These types of hypotheses are most relevant for
decision support, since making decisions based on purely
associational criteria amounts “to an irrational policy of
managing the news, and results, in practice, in replication
failures and poor recommendations” (13). Identifying
cause-effect relationships entails systematically adjusting
for selection effects and confounding bias, using methods
such as G-computation (14), propensity score matching
(15), and inverse probability weighting (16). In addition,
under strong assumptions, inferences about causal direc-
tionality underlying associational relationships between
multiple variables are possible.
Although there is a large effort in machine learning and
statistics to identify cause-and-effect relationships from
observational data, all causal hypotheses generated by such
methods must ultimately be validated by formal random-
ized controlled trials.
What is missing?

Both decision support and discovery are limited by the
knowledge contained in the database. For example, one
institution may have ancillary care pathways that differ
from another institution’s such that these differences impact
patients’ outcomes. If institution A uses a speech patholo-
gist to provide routine swallow therapy and institution B
does not, their outcomes for swallow function may be
different. If the details on a patient’s adherence to swallow
therapy are not contained in the database for either insti-
tution, then the treating institution would be an aggregate
variable that might correlate with a swallow function
outcome.

This missing of data also manifests itself when models
are validated between institutions. If a model is built from
only institution A’s data and validated with institution B,
the unknown information may dominate, and the validation
will fail. Alternatively, if a model is built with both in-
stitutions’ data and institution selection is the most domi-
nant variable, there may be little difference relative to
having 2 models, 1 for each institution, since the prediction
will mostly depend on the treating institution.
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This has implications. When using the LHS for deci-
sion support, the goal is to have the most accurate pre-
diction, and that may happen with models built using only
patients treated at the institution where the patient is to be
treated. For discovery, however, the goal is to uncover
underlying mechanisms, and for this, interinstitutional
validation becomes important, and completing missing
information in the data is crucial to uncovering this new
knowledge.

In addition to outright missing information, the knowl-
edge base is limited within the norms of clinical care. With
radiation treatments, for example, only the variability of the
dose distributions present in the knowledge base is avail-
able (17). If a particular anatomic region of every patient
received the same dose, then there is no possibility of
learning the impact on the outcome of varying dose to that
region. Since patients are treated with similar dose goals in
planning, the data will inherently subdue the importance of
the known dose goals, while it is potentially unethical to
deviate from them. In essence, “Without deviation from the
norm, progress is not possible,” as stated by Frank Zappa
(18). As the effects of irradiation on patients are explored,
consideration of the existing knowledge and how much of it
is inherently includeddand thus subdueddis critical in
any interpretations. Furthermore, as we trend toward stan-
dardized clinical guidelines, we risk further limitations on
the knowledge contained in the data and on our ability to
personalize care in the context of improved quality and
safety.
Examples

Treatment-plan quality prediction

An early example of using big data tools in radiation
therapy is the concept of geometry-driven or knowledge-
based treatment planning (KBP) (19-24). KBP aligns with
the LHS model in that it provides actionable predictions of
dose goals for planning and continuously learns as more
treatment-planning data are accumulated.

KBP analyzes a plurality of prior treatments to discover
patient-specific anatomic features that precisely correlate to
high-quality radiation dose delivery. With the model-based
dose predictions, KBP can be used for treatment-plan
quality control or outright plan automation. In its general-
ized form, KBP makes use of established machine learning
techniques such as supervised inference engines to discover
relevant geometric variables and their correlation to patient-
specific dose prediction.

While KBP is already in routine clinical use at some
institutions for the purposes of automated planning (25),
one of the most important contributions from KBP has
come in the combination of knowledge-based plan quality
control with a cooperative group clinical trial to assess the
frequency and clinical severity of suboptimal treatment
planning in a diverse multi-institutional data set (26).
Incorporating toxicity outcomes and
clinical intervention

The prediction of toxicities is also critical to a patient’s
ability to tolerate treatment and his or her long-term QoL.
An example is weight loss prediction using a classification
and regression tree for head and neck cancer patients (27).
Two predictions at different time points were developed to
predict weight loss at 3 months after treatment: (1) during
planning using patient demographic and dosimetry data;
and (2) at the end of treatment using additional on-
treatment toxicities and patient-reported QoL data. During
planning, the top 2 predictors of weight loss were tumor
site and higher doses to the masticatory muscle, a poten-
tially modifiable factor. By the end of the treatment, when
irradiation-induced toxicities started to present, patient-
reported oral intake, tumor site, and dose to the combined
parotids were more predictive. Early identification of high
risk of excessive weight loss may inform interventions such
as feeding tube placement, referral to a speech pathologist
for swallow function evaluation and exercise, or frequent
monitoring early after treatment.

Another example is in the prediction of irradiation-
induced xerostomia for head and neck cancer patients. A
wide range of clinical, demographic, and dosimetric factors
were evaluated by the algorithm and subsequently cross
validated by the accruing data. In this example, a low-dose
bath to the combined parotids and intermediate-level irra-
diation to the submandibular glands, alongside clinical
factors of chemotherapy, human papillomavirus infection,
feeding tube use, and baseline body mass index, were
identified as crucial for patients prone to severe
xerostomia. Downstream conditional predictive factors
including age, alcohol use, age, and smoking were also
attributable.

The LHS allows a comprehensive exploration of pre-
dictors for a variety of treatment-related toxicities beyond
the single-organ DVH and simple normal tissue complica-
tion models and, furthermore, bridging of all other clinical
and patient factors into an all-encompassing prediction
model. Evidence from such models warrants the foundation
for clinical decision support for the prevention and/or
management of toxicities.

The exploration of dose distribution patterns and inter-
organ dependencies may be critical to precision medicine.
Early studies have shown the spatial dependence of dose on
xerostomia in the parotid glands (28-30) and dysphagia
across the swallowing muscles (9, 31). Further exploration
of these spatial and multiorgan dependencies will be
enabled by the LHS and may improve our knowledge of the
impact of irradiation on normal function (32).

Genomics, Pathology, and Radiomics

At a higher level, radiomics, genomics, and pathology are
patient-specific data that are subjected to feature extraction
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in clinical practice and for research (33-35). Radiomics is a
clear example where a portion of a diagnostic image is
identified and features of the voxel valuesddensity, texture,
and gradientdare calculated and presumed to reflect
characteristics of the specific tissue being analyzed. These
features are used to predict disease response to treatment or
toxicity. The features themselves do not necessarily reflect
underlying mechanisms or status of the tissue, but they
might sample characteristics that reflect underlying differ-
ences between patients.

In contrast, pathology has had a long history of feature
extraction where cell type, grade level, and differentiation
are characterized from biopsy slides and the disease is
classified with staging and grading models (36). This his-
tory has provided a means of communicating complex
image and tissue characteristics, and these characteristics
are used to classify patients for both research analysis and
clinical decision pathways (37).

Genomics is another very complex data set used to seek
out known features that are associated with particular out-
comes. The dominant research looks to discover genetic
predisposition to disease or response to treatment. Other
work has suggested there may also be a predisposition to
radiation toxicity based on genomic signatures (38). The
LHS offers an opportunity to explore genomics in much
greater detail and assist in uncovering genomic patterns that
influence outcomes, which would otherwise be impossible
to discover.

Uncovering how the features derived from images, pa-
thology, and genomic signatures can inform clinical prac-
tice or discovery but ultimately relies on accurate measures
of outcomes and treatment information. Thus, it is the
combination of the clinical data with these measures that
will advance their ability to provide precise treatment
options for our patients.
Discussion

Just as machine learning is being used to drive autonomous
vehicles, is it reasonable to expect similar successes in
radiation oncology? At this point, self-driving cars focus on
the rules of the road and respond to immediate detection of
obstructions in their local environment. They, however,
exhibit difficulty in defensive driving, where they must
weigh the risks of the unknown and anticipate what might
happen. Radiation oncology, though precise in the treat-
ment, presents a similar situation with a few rules of the
road and acute observations but may be dominated by un-
knowns and patterns of defensive practice. As such, our
expectation for the foreseeable future should be one of
improved risk or outcome prediction as a supplement to
physician-based clinical decision making.

The key to success is to uncover and measure as many of
the unknowns as possible. Is a future possible in which we
accurately measure the critical aspects of a patient’s out-
comes and treatment? Computerization of health care is
advancing rapidly, and the societal culture evolving from
having smartphones amplifies the likelihood that good
measures of the continuous patient condition will only
advance. As outcome measures improve, radiation oncology
must do its part to accurately archive treatments in easily
retrievable form, adhering to standard nomenclatures. It
should be possible to query features of the patient’s history,
physical examination findings, radiographic studies, labo-
ratory tests, and “delivered” dose for any patient from our
clinical archive without significant processing. It should be
part of our practice to be good stewards of the data and
accurately record 3-dimensional delivery while capturing
the clinical data, appreciating that these data ultimately will
contribute to the LHS.

The presentation of a patient’s condition is currently
conveyed mostly in text and is typically presented in the
absence of population-based information. A disease- and
patient-specific presentation through modern human-
computer interfaces coupled with population-based statis-
tics can highlight how well a patient is doing in the context
of his or her disease peers and can, in itself, aid in indi-
vidualized decision making. Advances in such patient
presentations offer the framework to present risk and
outcome predictions in a form that is actionable.

The vision is a future where data are instinctively
collected and each patient is provided a prediction of his or
her disease outcomes and complications against the back-
drop of his or her peer populations with treatments tailored
to an individual’s needs and sensitivities. Continuous
learning of this LHS will open insights that involve patterns
in data far more complex than our traditional evidence-
based methods can uncover and will open the flood gates of
knowledge.
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