rsfMRI Brain Network Classification

Arden Chew

Mentors: Dr. Mathias Unberath, Dr. Haris Sair

Goals:

 Automate the classification of resting state fMRI brain network components

Significance:

 Allows for more precise preoperative brain surgery and prognosis predictions

Results:

- Binary noise classifier for filtering
- Multi-class CNN for component prediction
- Pearson correlation hierarchy evaluation

Figure 1: Standard labeling workflow

Figure 2: Confusion matrix of multi-class network assignment in group ICA study post noise filtering, with label 15 reserved for low confidence classifications

Background

- Functional MRI
 - Measures brain activity by detecting blood flow
 - Resting state fMRI is used to explore the brain's functional organization

- Brain is organized by grouped network components
- Hierarchical network relationships
 - Variation in data clustering and underlying patient physiology make labelling difficult
 - Incorporating hierarchical data can help

