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Introduction

• Resting state functional magnetic resonance

imaging (rsfMRI) offers an opportunity for

improved pre-operative planning in brain surgery

• Only a handful of physicians in the country can

currently classify rsfMRI brain networks at high

resolutions

• Automating the classification of rsfMRI network

components can provide valuable access to this

emerging form of pre-operative care

Outcomes and Results

The Problem

• Current pre-operative planning in brain surgery relies

on sparse task-based fMRI readings to identify critical

structures

• rsfMRI measures the functional organization of the

brain at higher resolution; small and complex brain

networks make rsfMRI more useful than task-based

fMRI but are difficult to classify

• Classification of small and complex brain networks

requires an understanding of the hierarchical

relationships of these networks

• Classification is essential to defining the boundary

regions of operation for a surgeon
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Figure 3: Hierarchical relationships between network components drawn from 

Pearson correlations between individuals’ component time series

The Solution

• The goal of this project was to design a classification

algorithm that incorporates hierarchical relationships

between brain networks

• Noise Filtering: A shallow convolutional neural

network with custom architecture was implemented;

initially trained on 20 subjects at 20 component level

from Washington University School of Medicine 120

dataset labelled at Johns Hopkins University

• Multi-class Prediction: A shallow convolutional neural

network with custom architecture was implemented

that can handle variable output class ranges based on

noise filtering and component granularity; network is

optimized for 64x64x32 normalized cerebral scans;

initially trained on group ICA of aforementioned
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Lessons Learned

• Deeper and more advanced machine learning 

solutions do not always offer the best model

• Clinical applicability must always be kept in mind

Future Work

• Validation on cases of brain lesion

• Incorporate transferring learning on CNNs
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Figure 1: Standard labeling workflow
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Figure 2: Custom Multi-class Network Architecture
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Time Series Component Time Series Component

•Time-series Correlation: Hierarchical relationships

between network components were evaluated when the

multi-class predictor achieved low confidence; strongly

correlated components indicate similar neuronal firing

patterns; low confidence multi-class prediction and

network correlation indicates unidentified brain network

Network Noise

Network 74 5

Noise 2 19

Precision Recall Accuracy

Attention 0.850 0.944 0.840

Language 1.000 1.000 1.000

Default Mode 1.000 1.000 1.000

Motor 1.000 0.952 0.960

Total 0.963 0.975 0.950

Figure 4: Contingency table of 

noise classification in group 

rsfMRI study

Figure 5: Performance statistics of noise 

classification in network separated testing 

Confusion Matrix of Multi-Class Post Noise Filtering

Figure 6: Confusion matrix of multi-class 

network assignment in group ICA study 

post noise filtering, with label 15 reserved 

for low confidence classifications

• Noise filtering is 

highly successful in 

preventing miss 

classification due 

to non-random 

noise signatures

• Clinical grade

accuracy is

achieved with 

shallow multi-class 

network

• Pearson correlation

successfully picks 

up outliers


