
 

 

 

Hierarchical Labeling of Resting State fMRI 

Brain Networks 

Advanced Computer Integrated Surgery II 

 

 

 

 

 

 

 

 

 

 

 

 

Group 9: Arden Chew 

Mentors: Dr. Haris Sair and Dr. Mathias Unberath 

May 6, 2019 

  



Introduction 

Modern techniques for pre-operative neurosurgical planning rely primarily on task-based 

functional magnetic resonance imaging (fMRI).  Such a work flow generally involves a patient 

performing anywhere from three to ten actions as prompted by a neuroradiologist, then assigning 

the areas of neuronal activity measured by blood oxygen level in the fMRI brain scan to the 

associated brain networks.  When planning area of operation and point of entry, a physician 

relies entirely on these task-based fMRI assigned regions of importance and may choose a path 

that causes unforeseen neurological damage. 

Resting state functional magnetic resonance imaging (rsfMRI) provides an intriguing alternative 

to pre-operative planning.  The rsfMRI imaging modality measures the same blood oxygen level 

as task-based fMRI but in a task negative state over a longer time course.  After independent 

component analysis (ICA) separates the unique activation patterns in rsfMRI data into brain 

networks, the functional organization of the brain can be inferred.  These networks are far more 

precise and complex than a series of task-based fMRI mappings, often providing upwards of 100 

unique brain networks and a more complete coverage of important brain regions. 

Surgical planning requires more than simple activation patterns, however.  Instead, a surgeon 

must know what each component correlates to when prioritizing which areas of the brain to 

avoid, and what the resultant neurological outcomes will be.  Furthermore, many activation 

components detailed by ICA account simply for unique noise patterns.  Estimates provided by 

Dr. Haris Sair of Johns Hopkins Neuroradiology hypothesize that up to 60% of ICA networks 

may be noise in a given study.  Unfortunately, only a handful of neuroradiologists in the United 

States can reliably label these more complex rsfMRI brain networks at high granularity.  This is 

primarily due to the complex hierarchical relationships that brain networks have with each other.  

A strong knowledge both of general cerebral anatomy as well as said hierarchy is essential to 

successful rsfMRI component labeling.  This study aims to automate the process of component 

labeling so as to provide greater access to the novel rsfMRI pre-surgical planning scheme. 

 

Technical Approach 

Overview 

A pixelated classification approach for rsfMRI networks was explored in Washington 

University’s “Resting state network estimation in individual subjects,” however success was only 

viable after hand selecting features to differentiate against.  Furthermore, only seven different 

brain networks were explored.  The lack of depth here prevented any need for exploration of 

functional hierarchies in brain networks.  My approach to automated brain network classification 

seeks to address these shortcomings by a three-fold labelling scheme: noise filtering, initial 

network classification, and Pearson correlation corrected labeling.  The input to my labelling 

scheme will be patient by patient, so as to retain its clinical viability.  As such, the input format 

will be the post-ICA rsfMRI volumetric data of an individual and the associated time-series data.  

The ICA runs for labeling will be done by individual, rather than by group study. 



 

Figure 1: Schematic labeling workflow incorporating the three main facets, noise filtering, multi-class prediction, and Pearson 
correlation comparison. 

Noise Filtering 

The binary labelling task of assigning a component to either noise or non-noise is well suited to 

the statistical offerings of a shallow convolutional neural network (CNN).  This is attributable to 

the distinct feature topography and speckling differences between noise and true rsfMRI 

networks as well as the differing normalized localities of noise and non-noise. 

I trained my initial network on 20 subjects from the Washington 120 OpenNEURO dataset 

which were subsequently labelled at Johns Hopkins University.  Validation was conducted with 

5 set aside subjects, and testing with another 5.  Given that this particular study was conducted at 

the 20 component ICA level, each subject contributes a unique set of 20 network components, 

thereby radically increasing my database size. 

Due to the rather small size of my initial training dataset, two regularization techniques were 

required.  Firstly, droupout layers were incorporated into the linear section of my network with a 

dropout probability tuned to 0.3.  Secondly, early stopping was implemented by limiting the total 

number of iterations to 100, and selecting the second epoch model as the best for generalization.  

Component 18 Not Sorted 

Figure 2: Sample noise network with scattered activation 
throughout non-localized regions of the brain, produced from data 

acquired in OpenNEURO Washington 120 dataset 



Binary cross entropy loss and stochastic gradient descent optimization were chosen as is standard 

in binary CNN applications. 

 

 

Figure 3: Shallow convolutional neural network for binary noise 
classification of rsfMRI brain network components 

 

 

 

Multi-class Component Classification 

At the heart of this classification task is the ability to distinguish brain networks based on their 

unique shapes and locations.  This is a similarly fitting task for a CNN.  Given that the 

distinguishing factors of a brain network are not small curves but rather “blobs” of activation 

sights, a complex and/or deep network is not necessary in this particular task.  A similar network 

architecture to the noise filtering network, altered for multi-class prediction was implemented. 

 

Figure 4: Shallow convolutional neural network for multi-class 
classification of rsfMRI brain network components 

Initial training for this multiclass network was 

conducted on another 20 subjects from the 

Washington 120 dataset.  In total 30 subjects 

were processed via group ICA such that 

component labels remained consistent.  This consistency eliminated the need for specific 

labelling of the unique components.  5 subjects were set aside for validation, and another 5 for 

Network Parameters for Binary Classification 

Loss function Binary cross entropy loss 

Optimization function Stochastic gradient descent 

Output activation function Rectified linear activation 

Dropout rate 0.3 

Number of iterations 100 

Epochs 5 

Batch size 1 

Learning rate 0.05 

Network Parameters for Multi-class Classification 

Loss function Cross entropy loss* 

Optimization function Stochastic gradient descent 

Output activation function Probabilistic softmax* 

Dropout rate 0.3 

Number of iterations 100 

Epochs 5 

Batch size 1 

Learning rate 0.05 



testing once more.  Due to the similarities in network architecture, ideal hyperparameters for the 

multi-class CNN tuning remained about the same as the binary noise CNN. 

It is necessary to note that for efficiency, all training was conducted on an NVIDIA GeForce 

graphic processing unit. 

 

Hierarchical Relationship Incorporation 

Difficulties in classifying network components can be resolved by observing the relationship an 

ambiguous network component has with an unambiguous component.  These relationships are 

quantifiable due to the fact that related networks tend to have similar activation patterns over 

time.  As such, Pearson correlation across time series provides a valuable tool for evaluating 

components with low confidence in their initial labels, and which hierarchy they may belong to. 

Small components with low multi-class classification confidence, but high Pearson correlation 

coefficient and statistically significant p-values are likely subcomponents of other networks 

present.  This is valuable information in pre-operative surgical planning not currently widely 

available in the United States. 

 

Figure 5: Pearson correlation coefficients and p-values across time series data of a single subject from Washington 120 dataset, 
useful in hierarchical modeling 

Statistical analysis of p-value confidence in Pearson correlation can provide a basis for 

evaluating the confidence in network relationships.  Low confidence network classifications 

paired with low confidence Pearson correlations indicate the presence of an unknown or not yet 

classified brain network. 

 

Complete Workflow 

Once training was training was completed for each CNN a full pipeline was assembled for 

individual rsfMRI scans to be evaluated.  Firstly, each component is evaluated for noise.  

Components with a normalized confidence of noise of 0.9 or higher were removed labelled as 



noise and not further processed.  All remaining components were fed through the multi-class 

CNN.  Any components with a maximum label confidence post-softmax of less than 0.5 were 

evaluated for Pearson correlations, otherwise their high-confidence label was assigned.  In the 

case of low confidence initial labelling but high confidence Pearson correlates, such correlated 

components were noted. 

 

Results and Discussion 

As will be noted later in this evaluation, a larger and more complex dataset is necessary to truly 

evaluate the success of my model. 

In evaluating the noise classifier/filter, 5 testing subjects were randomly selected from the 

Washington 120 dataset contributing 20 network components each.  The 100 components were 

hand-labeled at Johns Hopkins University, both by noise status and comparative brain network.  

The resultant accuracies are below. 

 

 

 

 

 

With generalized accuracy of 93% and total accuracy of 95%, the noise classification model 

indicates strong success. More clinically applicable however is the high recall score of 0.975, 

indicating that it is even more unlikely that true network components will be labelled as noise.  

To avoid this potentially clinically dangerous scenario, a high confidence threshold is 

implemented in noise filtering, therefore making it statistically near impossible for a true 

network to be filtered out as noise.  In the opposing case that a noise network is mis-identified as 

a true network and passes through the initial filter, low confidence with multi-class classification 

and Pearson correlating will provide insurance indication of noise status. 

 

 

 

 

 

Figure 6: Confusion matrices of component classification; from left to right: initial standard CNN classification; standard CNN 
classification with Pearson thresholding and reassignment; noise filtered CNN classification with Pearson thresholding and p-

value filtering (component 15 reserved for p-value filtering) 



Furthermore, the confusion matrices in figure 6 offer a promising look at how noise filtering and 

Pearson correlation incorporation of hierarchical data can drastically improve brain network 

classification.  Thought these results are only conducted on 5 individuals, the final confusion 

matrix accuracy of 96.25% on real brain networks indicates that the full pipeline may have 

clinically applicable promise. 

 

Management Summary 

Lessons Learned 

One of the most convincing lessons I learned during this project is the importance of considering 

simpler models.  The most convincing and thoughtful models are often those which provide are 

simple and elegant, and avoid unnecessary convoluted techniques.  I learned this lesson as I 

attempted to incorporate hierarchical information using a probabilistic convolutional deep belief 

network.  This latent variable model is extremely complex and as only been showcased in papers 

over the past year and a half.  After further discussion with my mentor Dr. Sair, I came to the 

conclusion that the hierarchical relationships are rooted in the firing over temporal rather than 

spatial settings.  Therefore, I was able to scratch the convolutional deep belief network for a 

much simpler, faster, and effective Pearson correlation solution. 

Another lesson that I both learned, and learned to apply, was to always keep clinical viability in 

mind.  Though 95% accuracy may be state-of-the-art or groundbreaking for any application, 5% 

error is far to high for clinical usage.  I learned this as I designed my noise filter, which I needed 

to be extra careful of handling false positives with.  Should my filter remove a true network 

identified as noise, a physician may plan a surgery through the filtered-out region.  I therefore 

selected a high confidence value for noise filtering, and tuned my model for high recall rather 

than high accuracy.  Building off this, I learned to ensure that should a noise component slip 

through my filter, there was a catch via Pearson correlation p-values to ensure that it did not go 

unnoticed.  These sorts of clinical checks were learned over the course of this project. 

 

Future Work 

The bulk of the future work in this study is training on more diversified data.  This comes in 

three primary ways which will provide for both a more clinically useful and statistically 

significant model.  Firstly, more data is necessary.  20 training individuals, 5 validation, and 5 

testing is simply too small.  Secondly, higher component levels must be tested.  The 20 

component scale begins to approach clinical viability, but the true clinical applications of rsfMRI 

pre-operative planning comes at component levels of 40-200, and therefore the model must be 

tested for this.  Lastly, this study must be validated on data with non-healthy individuals.  Pre-

operative scanning is not useful for patients without the need for brain-surgery.  Therefore, this 

study must both train and test on subjects with brain lesions in various locations and of various 



sizes.  Computer vision deformation of segmented tumor regions provides interesting potential in 

this regard. 

In addition to improvements in training, validation, and testing data, adaption of my models to be 

transfer learning enabled would help modulate the addition of said data.  Rather than needing to 

train a new model and test it each time more data becomes available, allowing for successive 

model training can help ease the workflow. 

As I will not be continuing with this project due to work and graduation constraints, it is 

important that my documentation provides enough clarity for future investigators to use, 

implement, modify, and replicate my work.  I will be going over these documents with my 

mentor Dr. Haris Sair to confirm that this said clarity is apparent. 
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Technical Appendix 

Dataset: https://openneuro.org/datasets/ds000243/versions/00001 

Independent component analysis MATLAB software package: 

http://mialab.mrn.org/software/gift/ 

Github repository: https://github.com/ardenchew/rail 

Graphic processing unit specs: NVIDIA GeForce 9600 
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