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Personal Project Summary 

Resting state functional magnetic resonance imaging (rsfMRI) provides valuable insight 

into the brain's functional organization, however labeling network components and organizing 

them into the correct hierarchical structure remains a challenge. My project looks to automate the 

hierarchical organizing and labeling of rsfMRI networks components for diagnostics and 

preoperative care.  

 

Selection Motivation 

In this paper, Hacker sought to solve the same fundamental problem as I aim to with my 

project: to computationally label rsfMRI network components.  While the paper takes a more 

rudimentary approach and simplified learning model, it is the first and only paper to successfully 

implement a resting state specific fMRI network component labeling algorithm.  By reading this 

paper I aimed to better understand data processing techniques with rsfMRI data, learn from and 

critique network architecture choices and justification, build on the framework they have laid out 

for medical application based rsfMRI brain component labeling, and evaluate fMRI accuracy 

testing procedure. 

 

Summary and Background 

Given that this paper was published in 2013, it is necessary to note that the state of 

clinical applicability for rsfMRI was still in its early beginnings.  The signal processing and 

classification method space therefore was severely limited.  Hacker’s work in this paper, as well 

as subsequent work with Washington University, successfully paved the way for future 

endeavors in computational applications of rsfMRI data science. 

The paper’s stated objective is to reliably classify rsfMRI scans of healthy individuals 

into seven pre-selected brain networks.  To achieve said objective the following general 

workflow of rsfMRI classification model training was employed: 1) rsfMRI pre-processing and 

signal normalization; 2) voxel-wise correlation map generation from pre-selected regions of 

interest; 3) principal component analysis dimensionality reduction; 4) multi-layer perceptron 

feed forward eigenvector training. 

 

Figure 1: Hacker et al. Primary voxel-wise network architecture and data flow. 

 



The resulting average validation accuracy of their network model after hyper-parameter 

tuning was 97.7% with 0.85% standard deviation, and 19.4% RMS error, indicating strong 

success. 

 

Significance 

This paper is most significant for its role as the first rsfMRI automated classification 

work.  Not only does the work provide a basis for many techniques in rsfMRI application now, 

but it also evaluates the limitations of its own model, and contrasts with previously existing 

techniques for task-based fMRI.  Hacker’s high validation accuracies across a range of tests 

validate that these methods have potential for clinical grade application once improved in 

granularity.  Furthermore, Hacker’s pre-processing techniques of PCA gave rise to rsfMRI 

component-based separation.  While PCA is no longer primarily used in rsfMRI analysis, the 

current standard of independent component analysis (ICA) was adopted after recognition of 

PCA’s initial success in the field.  Lastly, this paper notes the significance of addressing the 

hierarchical structure of rsfMRI network topology.  While the preselected PCA approach to 

semi-hierarchical feature learning was incomplete in the paper, it does well to address the 

limitations of the paper, and the subsequent capabilities needed for clinical use.  In my project I 

primarily aim to address this issue of hierarchical structure analysis with an unsupervised 

methodology. 

 

Figure 2: Hacker et al. Pre-selected brain network components pertaining  
to existing partial hierarchical topology. 

 

Technical Methods 

 

Data acquisition 

Separate rsfMRI scan datasets were acquired for training, optimization, validation, and 

testing.  Note that the testing dataset is called validation 2, while validation 1 corresponds to a 

typical validation set.  For training, optimization, and validation (1), 48 young and healthy adults 

were scanned at Washington University School of Medicine’s Neuroimaging Laboratories (NIL).  

Imaging for these 48 subjects was conducted with a 3T Allegra MRI scanner.  Conversely, 692 

subjects were scanned with a Tim Trio MRI scanner as part of the Harvard-MGH Brain 

Genomics Superstruct Project.  These 692 scans were reserved for testing. 



 

Figure 3: Hacker et al. Dataset selection and parameters. 

Neuroimaging preprocessing 

Normalization of rsfMRI scans temporally, spatially, and regionally is necessary in all 

resting state comparative network topology studies.  Hacker employs the standard suite of 

rsfMRI normalization techniques including “compensation for slice-dependent time shifts, 

elimination of systematic odd-even slice intensity differences due to interleaved acquisition, and 

rigid body correction of head movement within and across runs.”  In addition, gaussian spatial 

smoothing was employed on the resultant normalized volumetric data. 

For visualization purposes, Hacker employed Harvard’s existing FreeSurfer platform for 

cortical reconstruction and volume segmentation.  This allowed for the creation of a grey matter 

mask by which BOLD signal enabled fMRI networks could be projected onto. 

 

Network architecture and design choices 

The first layer of the network architecture takes the normalized rsfMRI volumetric scans 

and runs principal component analysis to identify 2,500 components (eigenvectors).  The 2,500 

component number was determined as a hyper-parameter of the network after validation 

adjustment.  Each principal component was subsequently fed into corresponding perceptron 

forming a 2,500 node input layer.  Following the input layer was a densely sampled 22 layer feed 

forward network producing an 8 class label.  7 of these output classes corresponded to 

preselected hierarchical network components, while the last was reserved for noise components. 

Hyper-parameter tuning was conducted solely with the reserved optimization dataset, 

while network tuning relied on the validation 1 dataset.  Hacker settled upon usage of simulated 

annealing optimization and cross entropy loss.  Early stopping was the primary methodology of 

regularization. 

 



Testing 

Firstly, individual variability was study through validation testing in the validation 1 

dataset.  Since this dataset retains the hospital and scanning properties of the training dataset, 

network architecture choices could reliably be re-evaluated from this testing strategy.  Validation 

at the group level was conducted on the separate Harvard dataset comprising validation 2.  For 

both testing techniques, the same standard normalization preprocessing was performed and PCA 

transformed the volumetric data into viable network inputs. 

 

Results 

Mean accuracy on the tuned Validation 1 dataset accrued a score of 98.8% with a 16.2% 

root mean squared (RMS) error.  Mean accuracy for the group study in Validation 2 dataset 

scored 97.7% accuracy with 19.5% RMS error.  Network component specific test results are 

available below. 

 

   

 

Personal Critique 

 

Places for improvement 

Semi-hierarchical model:  While the paper successfully recognizes that resting state network 

components retain a hierarchical topology, it fails to provide a viable automated solution to 

hierarchical structure recognition.  Instead, Hacker opts for preselecting network components 

with membership in a well known hierarchical order.  Not only does this preselected semi-

Figure 4: Hacker et al. Reported validation accuracies. 

 



hierarchical model fail to recognize topological organization in automation, but it also does not 

incorporate the topological relations into its label classification. 

 

PCA:  While applications of ICA were relatively spars in 2013 while the paper was written, PCA 

offers a few glaring downfalls which the author does not account for.  Most notably, PCA is 

incapable of differentiating independent temporal signals by which resting state components tend 

to define themselves.  Instead, an enormously large number of principal components 

(eigenvectors) are fed into the feedforward deep network for brain component approximation.  

This network is therefore inherently correlated by a preset method which does not correlate to 

any neurological structure.  In addition, the number of PCA components selected for input usage 

was chosen manually.  This manual selection defeats a portion of the automation capability while 

also requiring a computational expert to replicate such a tool on new datasets. 

 

Regularization: The only regularization strategy noted in the paper is early stopping, however 

early stopping tuning also requires a computational expert and many training iterations.  

Furthermore, training repeatability across future datasets would be limited by the early stopping 

parameter.  Instead network dropout could provide a more robust and repeatable regularization 

strategy.  In addition, dropout would mitigate potentially undiagnosed vanishing gradient issues 

within such a deep network architecture. 

 

Training data selection:  This paper has two major faults in its training data selection.  Firstly, the 

paper only trains using scans from a single scanning machine within a single hospital.  Existing 

hospital and machine biases can prevent the model from generalizing well.  Secondly, the paper 

trains exclusively on healthy patients.  As a clinical tool, something that operates successfully 

only on already healthy patients is not particularly useful. 

 

Highlights 

Novelty: Though it is easy to critique a paper after nearly a decade of development in the field, 

the reality is that this paper was groundbreaking for rsfMRI classification.  The scope of methods 

explored was minimal and yet Hacker manages to make insightful network choices, and 

successfully identifies confounding variables in the study.  Moreover, as a validation study, the 

high testing accuracy achieved and usage of novel automation techniques provides much to build 

on. 

 

Algebraic comparison of similar models:  While Hacker highlights the usage of a multi-layer 

network (MLN) in the study, a thorough algebraic justification of the advantages of an MLN 



over both dual regression and linear discriminant analysis is also provided.  This is particularly 

thoughtful, especially considering the future work that sought to improve on this paper. 

 

Neurological motivation recognition: The paper successfully recognizes the neurological 

confounding variables of the 7 pre-selected brain components and applies this understanding to 

pointed hyper-parameter and network tuning.  This is specifically evident in the case by case 

validation 1 study and subsequent adjustments made to address neurological correlations.  

Furthermore, significance testing was conducted to indicate that validation accuracies for each 

individual component are not entirely based on successes in neighboring components. 

 

Personal Takeaways 

• Learned standard methodologies for rsfMRI preprocessing which I can apply in my own 

data processing scripts 

• An improved understanding of network topologies, and the pitfalls of brain network 

correlations to be aware of 

• Learned new methods of individual validation testing rather than exclusively group 

testing 

• A holistic understanding of how rsfMRI volumes interact with deep networks 
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