Projection Mapping in Surgery

Group 10

Members:

Mentors:

Austin Shin

ashin9@jhu.edu

Professor Armand

of ENGINEERING

Joshua Liu

Objective

The goal of this project is to develop a projection mapping prototype that projects patient data (eg. CT/MRI scan model) onto patient body in realtime.

Application

Cranioplasty

• Surgical repair of bone defect in skull after operation or injury

https://www.parashospitals.com/india/treatments-and-procedures/cranioplasty-craniotomy-d elhi-gurgaon-patna-darbhanga/

Summary of Changes

- Not handling projector hardware
- ArUco marker pose estimation was worse than anticipated, leading to delays
- Factoring in time for accuracy evaluations for each step

Technical Approach - Workflow

Before Operation

During Operation (marker-based)

Technical Approach - Marker-based Registration

Steps

- 1. Detect markers
- 2. Pivot calibration
- 3. Touch anatomical landmarks with tool
- 4. Record location of each landmark relative to camera
- 5. Perform initial registration with CT P model
- 6. Calculate location of landmarks relative to patient marker for future registration

Given: RGBD data IMU camera data

RGBD camera

Given: CT scan of skull and model of implant in same coordinate frame

Camera - https://www.researchgate.net/figure/The-hardware-configuration-of-real-time-projection-mapping-system_fig6_276415839 Skull with hole - https://www.pinterest.com/pin/415949715559685977/?lp=true 2D and 3D model of skull - https://www.3dside.eu/en/cranial-implant-1 Marker pen - https://research.fb.com/wp-content/uploads/2017/09/uist2017 pen.pdf

Technical Difficulty - Marker-based Detection

Difficulty: Marker Pose Estimation

Reason: Pose Ambiguity

• Using min number of points with solvePnP

Jin, Pengju. Uncertainty Adaptation in Robot Perception and Learning. Dec 2017. CMU.

Technical Solution - Marker Pose Estimation

Solution: Geometry-based Filter

Other potential solutions: two markers per panel side, custom function to extract all corners on marker, printed markers on workspace, IPPE package + depth map

Technical Approach - Marker Setup

For example, 6-sided marker tool:

Top view

Technical Approach - Pivot Calibration

600. 445 Copyright © R. H. Taylor 1999-2008

Ground truth: [0, 0, -0.210] Measured: [0.00812451, -0.00558087, -0.21730515]

Technical Approach - Realtime Registration

2. Recording points

Camera - https://www.researchgate.net/figure/The-hardware-configuration-of-real-time-projection-mapping-system_fig6_276415839 Skull with hole - https://www.pinterest.com/pin/415949715559685977/?lp=true Marker pen - https://research.fb.com/wp-content/uploads/2017/09/uist2017_pen.pdf

Technical Approach - Markerless Registration

Ideas

- Collect high density of points around unique anatomical feature to do registration
- 2. Do registration with raw Realsense point cloud data

Given: RGBD data IMU camera data

R	GBD ca	imera

Given: CT scan/model of skull Model of implant

molant

Camera - https://www.researchgate.net/figure/The-hardware-configuration-of-real-time-projection-mapping-system_fig6_276415839 Skull with hole - https://www.pinterest.com/pin/415949715559685977/?lp=true 2D and 3D model of skull - https://www.3dside.eu/en/cranial-implant-1 Implant - http://balticimplants.eu/patient-specific-medical-devices/cranial-implants/

Deliverables

Minimum:

- Video showing ArUco markers are detected and output of their 3D location
- Accuracy evaluation of marker pose estimation
- Video of marker setup procedure and pivot calibration

Expected:

- Python/C++ source code and documentation
- Window display of aligned points with marker-based registration and text file with output stream of computed transformations
- Window display of defect skull augmented with CT model

Maximum:

- ***** Same deliverable as marker-based registration but with markerless procedure
 - Accuracy evaluation of marker-based and markerless procedure with comparison
 - Video of projection mapping also projecting oversize implant on defect skull

Updated Activity Schedule

	Feb 18	Feb 25	Mar 4	Mar 11	Mar 18	Mar 25	Apr 1	Apr 8	Apr 15	Apr 22	Apr 29
Familiarize myself with software + hardware											
Estimate ArUco marker pose + evaluate accuracy											
Develop marker-based registration pipeline: marker tool setup pivot cal, registration											
Calibrate projector-camera system											
Construct 3D model from CT scans											
Augment RGB image from Realsense with CT											
Write report, polish documentation											
Project implant to defect skull and gather point cloud data of defect area											
Develop markerless registration											

Dependencies

Dependencies	Solution	Expected Date	Needed by	
Computer	Personal laptop	Done		
Access to BIGGS Lab	Asking Professor Armand	Done		
Access to Intel RealSense SDK 2.0	Downloaded from website	Done		
Access to Intel RealSense Camera	Bought	Done - Joshua		
Access to Open3D library and OpenCV	Installed	Done		
Access to projector	Bought	Done - Joshua		
Holding mechanism for projector and camera	Built by Joshua	Done		

Dependencies

Dependencies	Solution	Expected Date	Needed by	
Construct ArUco marker panels and marker tool	3D-printed	2/21	2/22	
Construct ArUco marker fixture	3D-printed	4/17	4/17	
CT scan reconstruction software (eg 3D slicer)	Seek advice from Professor Armand and lab mates	4/15	4/21	
Obtain data (scans/models of skulls)	Currently have molds, need corresponding scans. Currently using heart model and 3D-reconstructed scan from structure sensor	3/10 4/17 - Joshua	3/15 4/21	
Interface with projector	Online research	3/10	3/25	

Milestones

- 3/3 Python script to estimate ArUco marker pose
- 3/16 Accuracy evaluation report for marker pose estimation
- 3/29 Python script to calculate transformation between markers on marker tool
- 4/1 Python script to execute pivot calibration
- 4/8 Python script that allows user to interactively pick points in point cloud
- 3/17 4/11 Python script for complete working marker-based registration
- 3/31 4/17 compilation of 3D models of CT scans of skulls
- 4/14 4/29 Video of RGB Realsense image overlaid with appropriately transformed CT model
 - 5/3 Python script for complete working markerless registration
 - 5/5 Final report written and code review by Joshua

Any Questions?

Additional Pose Ambiguity Explanation

The ambiguity problem. The same marker projection could come from two poses, the two cubes shown in red and blue.

Calibration Results

Marker Tool Setup Plots

Pivot Calibration Plots

