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Figure 1. Augmented Reality applications of Pmomo: virtual clothes (a); animated 3D organs with beating heart and breathing lungs inside the bust
model (b); virtual porcelain texture on a bowl model (c); virtual canvas on a boat model (d).

ABSTRACT

We introduce Pmomo (acronym of projection mapping on
movable object), a dynamic projection mapping system that
tracks the 6-DOF position of real-world object, and shades it
with virtual 3D contents by projection. The system can pre-
cisely lock the projection on the moving object in real-time,
even the one with complex geometry. Based on depth camera,
we developed a novel and robust tracking method that sam-
ples the structure of the object into low-density point cloud,
then performs an adaptive searching scheme for the registra-
tion procedure. As a fully interactive system, our method can
handle both internal and external complex occlusions, and
can quickly track back the object even when losing track. In
order to further improve the realism of the projected virtual
textures, our system innovatively culls occlusions away from
projection, which is achieved by a facet-covering method. As
a result, the Pmomo system enables the possibility of new
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interactive Augmented Reality applications that require high-
quality dynamic projection effect.
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INTRODUCTION

Projection Mapping, also known as Spatial Augmented Real-
ity (SAR), is a frequently used method to create phantasms
in real world. With this method, visual phenomena of real-
world objects could be changed or enhanced — colour, tex-
ture and even geometry. Static projection mapping is com-
mon in multi-media shows, applied on static objects such as
sculptures or buildings.

While there have been many researches on Projection Map-
ping on static sculptures [1][20][30][31], Dynamic Projection
Mapping that can keep tracking of a moving target and align-
ing the projection at interactive level is still a challenge. To
achieve high-quality results, the accuracy and the robustness
of the system must achieve high requirements as to make
light bundles be projected exactly onto the target object in
real-time. Also, cumulated errors and delays in tracking can
cause visible deviation between the projected texture and the
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real object, leading to visible artifacts. Last but not least, the
users’ spontaneous and rapid interactions with the object may
lead to occlusions, which makes the tracking and texture pro-
jection even more challenging.

There are some works related to dynamic projection map-
ping. In most of the cases, there is either strong assump-
tion on object’s geometry (e.g. quasi-planar), or object’s
motion (e.g. preset or limited movement). Some work-
s([41STIT L1311 7]1118][19][21][32][33][34] ) perform adap-
tive projection on deformable and movable surfaces, e.g.
transforming deformable paper into virtual displays; some
others perform projection on 3D objects with simple struc-
tures [27][23], or on 3D objects with very limited movement
range [3].

Our system, in contrast, could handle complex geometries
with 6-DOF free motion at the interactive level. In order
to achieve a robust real-time alignment between the projec-
tion and the object, we developed a novel depth-image based
tracking algorithm that can handle rigid objects with arbitrary
structures and manage both internal and external occlusion-
s. In addition, we use an AHRS (Altitude Heading Refer-
ence System) sensor to improve the real-time alignment per-
formance, also solving the problem that depth-image can’t
perceive the rotation of symmetrical shapes. As to further im-
proving the realism of projection, our system novelly culls off
the occlusions from the projection (Shown in Figure 2). As
a result, our system is unique with the combination of these
features, and is robust for real interaction. With our system,
real-world objects can be projected with realistic virtual ex-
teriors, and transformed into movable 3D displays, bringing
the possibility of a variety of interactive AR applications in
the field of art, education and entertainment. Figure 1 illus-
trates some applications of our system.

In summary, we contribute a novel dynamic projection map-
ping system, Pmomo, that can simultaneously:

1. Align the projection with the object in 6-DOF motion en-
vironment in real-time.

2. Support object with complex geometry.

3. Cull occlusions from projection .

We organize our paper as follows: In Section 2, we review
background and related techniques in this field. In Section
3, we present the pipeline and algorithm of our system. In
Section 4, we report our experiment results and in Section 5
we conclude with future works.

Figure 2. Occlusion culling contrast. (a) shows projection without occlu-
sion culling; (b) shows projection with occlusion culling.
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BACKGROUND

Since tracking is the main technical challenge, in this section,
we will review the previous work related to dynamic projec-
tion systems, with an emphasis on the tracking method.

To achieve projection on dynamic objects, many sorts of
tracking sensors have been tested. Bandyopadhyay et. al. [3]
suggested to employ the magnetic tracker to obtain the posi-
tion of the object. But, this type of sensor suffers from a very
short working distance and the cost can be impractical. The
authors of “"Lumipen” [27] used a high-speed vision sensor
and a projector with a high-speed optical gaze controller to
track objects by keeping the target in the center of the image.
This method shows good performance on high-speed balls,
e.g. pingpong ball and yo-yo, but it is hard to handle free
rotations. Wang et. al. [35] presented an augmented real-
ity surgical navigation system with customized stereo cam-
eras designed to track both the patient and instrument with
tracking algorithm based on assumption of the 3-D contour
of teeth. In the show of “Face Hacking” [2], optical mark-
ers were utilized to track human face and perform projection
on the face. However, optical makers can visually interfere
with the projection effect, and demand complex setup with
multiple infrared cameras setting around the scene.

Some researchers employed the method of explicit tracking
by projection features. This kind of method uses the camera
to observe the projection patterns on the object to find the
correct alignment. Cotting et. al. [8] injected imperceptible
codes in a projector. Zheng et. al. [39] aligned the projection
and the object by iteratively minimizing the visual distortion.
Based on the work of Yang and Welch [37] and the work by
Johnson and Fuchs [15], Resch et. al. [28] developed a shader
lamp system which used a frame by frame tracking method of
comparing discrete features found in the camera and projector
image to achieve interactivity close to real-time. A concern of
using the projection as an active light sensor is that the object
can not be projected with fancy texture or rapidly changing
animations since it will interfere with the alignment. Also the
occlusion handling can be a problem.

Another kind of tracking method is based on depth camera.
The advantage is that the depth camera is not sensitive to light
condition, and does not interfere with the projection. Besides,
the commodity depth camera like Kinect 2.0 provides a high
resolution, a high precision and a wide field of view, making it
an accessible and practical technological solution to the issue.

For state of art tracking technology on depth data, KinectFu-
sion [14][26] presented impressive real-time 3D reconstruc-
tion capability for static scene. And in recent, Dynamic-
Fusion [25] extended the reconstruction to dynamic scene,
bringing the possibility of real-time tracking and segmenting
3D objects. But for the scenario of dynamic projection align-
ment at interactive level, there are still many concerns. For
example, it is hard to segment the target object in real inter-
action when the object is holding by users’ hands and is of-
ten close to and overlapped with the users’ body. Also there
are concerns on the accumulated error, the delay for complex
computing, and the failures under sharp and continuous mo-
tion.
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As to registration method for 3D model, ICP(Iterative Closest
Point) [6] [29] is a commonly used concept, e.g. KinectFu-
sion employed it to track the motion of the Kinect camer-
a. ICP registers the source and the target by a closest point
scheme. It starts with an initial guess of transformation, and
in each iteration, it searches for the pairs of closest points on
the source and the target and refines the transform vector that
minimizes the matching errors. The main worry in using ICP
is that the algorithm can easily be trapped in local minima.
Thus, it usually depends on the assumptions of simple scene
and good initialization when using ICP for real-time tracking.
E.g. [12] assumes that the scene for tracking contains only the
target, the user’s hands and a clear table top so that the target
can be easily segmented out of the depth and color images of
Kinect. Then it utilizes SIFT (Scale-invariant Feature Trans-
form)[22] with RGB image for getting the rough pose as the
initialization for ICP.

A more promising searching approach for registration is
CMA-ES (Covariance Matrix Adaptation Evolution Strate-
gy), for it can efficiently provide semi-global optimization.
The optimization procedure is initiated with an ancestor, and
in each iteration, offspring of the best fitter from the last gen-
eration are generated as new samples with Gaussian distribu-
tion. It stops when the fitness of the best fitter converges to
a threshold, or the number of iterations reaches a threshold.
Jordt et. al. [16] provided a tracking method that employs a
grid to represent the objects and uses CMA-ES for searching
the optimized position of each point in the grid. The num-
ber of points determines the dimension of the search space.
As a result, this method can support deformable object but
can not work for complex structures with large quantity of
grid points. The authors of “Flexpad” [33] proposed another
method for tracking the deformation of paper for projection
alignment. They constructed 16 deformation models of paper
and adopted CMA-ES to search the approximate optimum of
weighted factors of the deformation.

Occlusion is also a big problem for tracking. Some previous
works, e.g. [10] , tackle the occlusion problem by a proba-
bilistic external occlusion map obtained by using the intensity
discrepancy. KinectFusion [14] handles occlusion by means
of raycasting which is quite expensive. Flexpad [33] detects
occlusions created by the user’s hands by distinguishing the
optical feature of skin on infrared image. And [12] detects
hands by building the color model for each user’s skin. There
are also works using multiple cameras to solve occlusions,
e.g., using 16 cameras [9].

In conclusion, the previous tracking methods have the weak-
ness of only handling limited motion range or speed, limited
geometry, or limited occlusion, and in some cases, the hard-
ware is too complicated but producing low tracking capabili-

ty.

METHOD OF PMOMO

The Pmomo system tracks the 6-DOF position of real-world
object, and shades it with virtual 3D textures by projection.
The work flow of our system is shown in Figure 3.
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In preparation phase, a 3D mesh model of the target object
needs to be acquired. This can be achieved by either scan-
ning the real object by reconstruction technologies or directly
designing and 3D-printing the digital models. Based on the
raw 3D mesh model, four models need to be generated for
tracking and projection. The first one is a low-density point-
cloud model for tracking. The second one is a high-density
point-cloud model for occlusion culling. the two point-cloud
models are constructed to have even point distribution. The
third one is a mesh model that is remeshed from the second
one. A point-facet list records the matches of the points in the
second model and their adjacent facets on the third one. The
fourth model is a textured model designed for projection.

In real-time phase, the first step is to obtain the transform ma-
trix of the target object. This tracking procedure is achieved
by registering the low-density point cloud model to the cur-
rent depth image by a semi-global optimization algorithm.
The next step is to generate a layer of facets for occlusion
by using the high-density point cloud model and the point-
facet list. In the third step, the textured model is covered with
the occlusion facets rendered by the background color, and
then transformed by the transform matrix obtained from the
first step. Finally, the final rendered result is projected onto
the real object.
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Figure 3. Overall work flow of the Pmomo system. Procedures with
solid lines are run in real-time. Procedures with dash lines are done in
preparation phase. A refers to the transform matrix of the target object.

Setup and Calibration

To achieve projection mapping, we need to build a virtual
scene precisely calibrated to the real scene. Within the virtu-
al scene, there is a 3D model that shares the same pose and
position of the real object and a camera that shares the same
view port of the real projector. The image rendered from the
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viewport of the virtual camera determines the projection con-
tent.

At each frame of Pmomo, 6-DOF position of the real object is
tracked, and its correspondent virtual 3D model is then trans-
formed and updated to that new position. Kinect 2.0 depth
camera is used to capture the real-time scene and calculate
the translation vector. And AHRS sensor is used to obtain the
rotation vector.

The model of the AHRS sensor we use is 3DM-S10A/B from
Shanghai Siyue Electronics Co., Ltd, which provides stable
orientation angles (+2° for dynamic error and +0.5° for static
error) with high update rate (100fps) and no restriction in 6-
DOF range and costs about twice the price of a Kinect 2.0
Sensor.

Figure 4 shows the physical setup of Pmomo, consisting of a
standard desktop PC (Intel i7 processor, 8 GB RAM, and an
NVIDIA GeForce GTX 770 graphics card), an AHRS sensor
mounted on the object, a Kinect 2.0 and a projector (Panason-
ic PT-BX40) placed on a shelf close to each other. The setup
creates an interaction volume with best performance of about
1.5x1.0x 1.0 m.

3DM-S10A/B

Projector

' -
Figure 4. Physical setup and models for testing.

In the calibration work, the AHRS sensor needs to be cali-
brated to the coordinate of Kinect depth camera. It is mount-
ed on the object in the way that its three axes are aligned to
the object’s coordinate. Let the rotation of the object in the
depth sensor’s coordinate be called R* and the rotation ob-
tained from the sensor be R*, then,

RF = R'R* (1)

R is the rotation from depth camera’s coordinate to the sen-
sor’s coordinate. R’ is obtained by the same registration al-
gorithm described in the Tracking Section. As to get the best
registration result, the object should be put in the middle of
the depth camera’s view field without external occlusions.

We use Kinect RGB camera to indirectly calibrate the pro-
jector to the infrared camera (the infrared image shares the
same view of the depth image). First, we obtain the transfor-
m matrix between the RGB camera and the infrared camera
by Zhang’s method [38]. Then, we calibrate the RGB cam-
era and the projector by [24] and obtain the transform matrix
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between them. Using the two calibration data, the transform
matrix from Kinect infrared camera to the projector can be
calculated.

Tracking

In order to achieve robust tracking and texture projection per-
formance for randomly moving rigid object with complex ge-
ometry under arbitrary occlusions, we employs the CMA-ES
based tracking method with three major modifications:

1. We reduce the complexity of tracking by homogenizing
the input geometry to evenly distributed low-density point
cloud;

. We embed an occlusion detection method with self-
adaptive threshold in the iterations of CMA-ES;

. The step size of each iteration is also self-adaptive in order
to handle bad tracking conditions.

Our pipeline for object tracking is shown in Figure 5. At each
frame 7 in the running stage, we store a transform matrix A,
and an occlusion list L,,. We use the result from the last frame
as the initial guess and search for a transform matrix A, that
best registers the low-density point cloud to the current depth
image. Then the occlusion list is updated to indicate which
points in the point cloud are occluded in the current frame.
The final output of the tracking process is the predicted trans-
form matrix as to compensate the computation and device in-
put delay.

Tracking

Ap-q
(The Initial Guess)

CMA-ES
Fitness
Calculation
Renewing The

‘ Rotation ‘ ‘ Depth Map H Pont Cloud ‘ ‘ Occlusion List }4/ Occlusion List

| f

predict
A‘Il

Predicting —>

Work flow of Tracking. A, is the transform matrix of the

Figure 5. s
current depth image frame, A?“““' is the predicted transform matrix,

A,—1 is the transform matrix of the last depth image frame.

In registration, we use the CMA-ES scheme to obtain the
translation vector T, while the rotation vector R, is from the
AHRS sensor. First our algorithm initializes with the trans-
lation vector T from the last frame, then randomly generates
some variants of 7 using covariance matrix. For each vari-
ant of 7, the system uses it together with R, to transform
the point cloud {p}, and then selects the visible points in the
transformed point cloud as point set {P}. Next, the system
projects {P} to the depth map, getting their 2-D (u,v) posi-
tion. For each point P; in {P}, the system gets its counterpart
P! by back-projecting the pixel on (u, v) with its depth value
on the depth map to the 3-D space. The RMS distance of all
the pairs {(P}, P;)} is calculated as the fitness error. After that,
the system picks up the vector 7"’ that has the lowest fitness
error, and updates 7 by 7’. The above steps are iterated until
the fitness error reaches a threshold.
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We therefore define the following fitness term for each trans-
formation guess.

1
FA) =]+ Z ll¢(x(Ap:) — Apill? 2

pi€S

where S is a set of sample points, n is the size of S, P; =
Ap; is the transformed position of p; in the depth camera’s
coordinate. P; = ¢(n(Ap;)) is the counterpart of P; by depth
map. The function g = n(p) performs perspective projection
of p € R? = (x,y,2)" to obtain g € R?> = (x/z,y/z)" on depth
image. The function p = ¢(g) back-projects the q on depth
image to world coordination by the depth value.

Transformed sample points invisible to the depth camera are
excluded. The visibility of a transformed point P; is deter-
mined by the satisfaction of the following two requirements:

1. If

Angle(it, p_ic) <90° 3)

where 7 refers to the normal of point P;, p7< refers to the
vector from point P; to the center of depth camera, and

Angle(it, pk) refers to the angle between 7 and pk.
2. If p; is not marked as occluded in the occlusion list.

Self-adaptive Occlusion Detection

|:

Figure 6. Detection of occluded sample points in real-time. Red points
are visible points on the point cloud model, yellow ones are occluded
ones at each frame. The background image is a visualized depth map.

For real-time occlusion, we observe that the changes in the
set of occluded sample points are very small between two
consecutive frames, as shown in Figure 6. Thus, the last
frame’s occlusion list can be used for the tracking of the cur-
rent frame, and after obtaining the current A,, we update the
occlusion list for next frame. The occlusion list is updated by
checking every transformed sample point with the following
two conditions:

1. If the Equation 3 holds.
2. If

(depthreal(P) - depthvirtual(P)) > thr (4)
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where

thr = max(F(A,), minT hr) (®))
where minT hr is a constant value determined by the precision
of tracking. The benefit of the adaptive occlusion threshold
is that it can reduce the chance of losing track due to massive
misdiagnosis of occlusion points.

Step-size Control

In some cases, the CMA-ES method will fall into incorrect
local optimal. For example, when a person holds a object, the
algorithm might track onto the person incorrectly instead of
the object. To handle this, we use an adaptive step-size for
CMA-ES to generate new samples. The step-size o affects
the deviation between the ancestor and the offspring. For each
frame, a default value is initially set to o-. In the iterations of
CMA-ES, if the Euclidean distance between the fittest trans-
lation vector of an iteration and the translation vector from the
previous frame exceeds a maximal value, our algorithm will
restart the iterations with the step size o reduced to ko. k is
the reducing scale, and we empirically set it to be 0.25. With
the step-size control scheme, the system also gains the feature
that when the tracking suffers from severe errors, the system
will hold on around the previous position. This feature, com-
bined with the semi-global searching scheme, provides two
advantages for real interaction. First, when the system loses
track of the object due to big but instant occlusions (e.g. peo-
ple walking through the area between the object and Kinect
camera), the tracking will hold on to the previous position
for a while and when the occlusions are removed, our system
can quickly track back the object in seconds. Second, if the
system tracks incorrectly to a wrong place, the user can help
the system track back the object by moving the object to that
place with the indication of the light bundles of projection.

Delay Management

While the AHRS sensor has an insignificant input delay that
is negligible, Kinect has a more apparent input delay Dy, with
about 90 milliseconds for Kinect 1.0 and about 60 millisec-
onds for Kinect 2.0. As a result, for the process of real-
time depth image registration, the rotation parameter from the
AHRS sensor needs to be the one obtained D; milliseconds
before the current frame.

For the real-time projection, we use the latest rotation from
the AHRS sensor, and use the predicted translation by a linear
model:

Trfvredict — Tn + f * (DL + Dk) * (Tn - Tn—l) (6)

Where D, is the computation delay, Dy is the Kinect input de-
lay. f is the frame rate, T, is the estimated translation vector

of the nth frame, T?"*“' is the predicted one.

Due to the noises in depth image, the tracked position will
randomly fluctuate even if the model remains static, and the
motion prediction term will amplify the noise. But the fluctu-
ation is not visually evident in fast motion. Thus, Like Wang
et. al. [35], we perform Extended Kalman filtering (EKF) to
estimate the quasi-static pose to reduce the fluctuation when
the model is static or moving slowly.
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Model Constructing

In order to achieve best performance, an evenly-distributed
point cloud is needed for our system. With unevenly-
distributed sample points, if a dense part is occluded, the re-
maining sample points may not be sufficient for tracking.

The process of generating an evenly-distributed point-cloud
{p} from a mesh model has two steps. First, we generate Pois-
son Disk sample points on every facet with a certain density
[7]. Second, we initialize {p} as an empty point set and tra-
verse all the Poisson-Disk-sampled points on the mesh model.
If a point is close to (below a certain threshold) any points in
{p}, we drop it, else add it to {p}.

Our method also generates a point-facet list while remeshing
the point-cloud model for occlusion culling. A point-facet list
is a list that tells which facets are adjacent to a certain point.
The approach for finding the adjacent facets of point p is to
traverse every facet in the remeshed model and choose the
facet that contains p as one end point.

Occlusion Culling

In Pmomo, a facet-covering method is used for occlusion
culling. The pre-generated high-density point cloud model
and its corresponding mesh model are utilized in the method.
Using the current transform matrix as input, the high-density
point cloud model is aligned to the depth image, and occlud-
ed sample points are picked up by the same occlusion de-
tection function in the tracking process. Since we obtained
point-facet list for point cloud from mesh, we could easily
find facets that are corresponding to the point and add them
into the occlusion facets union. Then the occlusion facets are
covered on the textured 3D model and are rendered by the
background color which is black in the projection scene.

By overlapping black facets on the occluded part of the mod-
el, the occluders will be projected in black so that they can
be culled from final projection image. The advantage of this
method is that for inner occlusion condition, the occlusion
facets will be covered on the invisible inner side so that not
interfere with the front side.

Computation Complexity

The computation complexity of the tracking process is:
O(NMS). N refers to the number of points in the point cloud,
M refers to the number of searching iterations, S refers to the
number of offspring (translation vector variants) generated in
each CMA-ES iteration. Thus, the computation complexity
is independent with the size and the shape of the object.

Unlike in the tracking phase where the fitness function is it-
eratively computed for at most NMS times to find the op-
timal transform matrix, in the step of generating occlusion
facets, the occlusion detection function is calculated only
once. Thus, the calculation with high-density point cloud
model is affordable. Moreover, the higher the density, the
higher precision will the system acquire for occlusion culling.

Initialization

The initial guess of the position of the object is manually set
to be around the real position. Then our algorithm will semi-
globally search the right position, and within several frames,
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t=1.35s

t=170s

Figure 7. The initialization of tracking. The pictures are snapshots of
the virtual scene with the Kinect infrared image rendered as the back-
ground.

the system will automatically align to the object. Figure 7
shows the process of the automatic alignment by snapshots
extracted from a real-time record.

EVALUATION

For performance estimation in previous works on dynamic
projection , The authors of “Flexpad” [33] calculated the RM-
S depth distance between the paper’s surface and the corre-
sponding depth image, showing an average error of 6.47 mm
out of over 20,217 frames of data. But it lacked the specifi-
cation that under what speed of object motion the precision
had been measured. The system of [28] presented the eval-
uation result that its translation error along each x,y,z axis
varied from 0.9mm to 4.5mm for static condition and 2.1mm
to 31.6mm for moving condition, which was hugely impacted
by the projection texture according to the authors. Also, they
lacked the speed and occlusion information for their test, and
the estimation was conducted only on one car model. In our
experiment, we estimate the registration error under differen-
t speed and occlusion proportion, also estimate the real-time
projection alignment error caused by the motion prediction.

We demonstrate our system on three challenging models: a
bust, a bowl and a sailing boat. The bust has diverse density of
meshes (e.g. denser at navel and sparser on thighs); the bowl
has big proportion of internal occlusion (e.g. as shown in the
picture cl in Figure 10, when the inner side is completely
occluded by the outer side, the inner occlusion rate reaches
50%); the sailing boat has cut-out and sunken structure, and
the area of its frontage changes sharply when it is rotating.

The three models are all 3D-printed, so we have their ground
truth 3D models for testing the tracking performance of
our system. We also perform test with their comparatively
low-quality 3D models reconstructed by KinectFusion with
Kinect 2.0 sensor.

In the experiment, ten volunteers are asked to freely move
the models in the view field of Kinect camera and occasion-
ally occlude the model by hands or stuff like cards or tapes.
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For testing the tracking performance with the ground truth
3D model data, we record around 100,000 frames (30 fps,
around 56 minutes in total) of tracking data for the test, with
each model at least 18 minutes of testing time. So does the
test with 3D model data from KinectFusion.

Tracking Precision

Occlusion Proportion: 0% - 15%

Acceleration: 0 - 30 cm/s?

Reg-Error (mm) 5.1 6.1 6.7 7.2
Ground Truth
Reg-Error (mm) 5.7 1.5 8.8 0.3

KinectFusion

Occlusion Proportion: 15% - 25%

Acceleration: 0 - 30 cm/s?

Reg-Error (mm) 9.7 11.2 12.3 18.8
Ground Truth
Reg-Error (mm) 10.7 13.2 15.6 29.7

KinectFusion

Occlusion Proportion: 0% - 15%

Velocity: 0 - 20 cm/s

Reg-Error (mm) 5.0 5.6 9.0
Ground Truth

Pred-Error (mm) 34 4.0 11.3
Ground Truth

Reg-Error (mm) 6.3 6.8 12.3
KinectFusion

Pred-Error (mm) 4.8 6.5 15.0

KinectFusion

Figure 8. Average tracking error. Reg-Error refers to the registration
error on depth frame; Pred-Error refers to the prediction error.

As to estimate the performance in detail and independent-
ly to models, we mix all the testing data and classify them
under moving speed, acceleration and occlusion proportion.
The tracking precision is estimated by the average RMS Eu-
clidean distance error between the model and the correspond-
ing depth image per frame as defined in equation 2.

The velocity V,, is calculated by
Vn = f * ”Tn - Tn—l” (7)

T, is the translation at the frame nth, f is the update rate of
the depth image frame.

The acceleration is obtained from the AHRS sensor. We use
the function below to subtract the gravitational component
from the raw acceleration data.

an = a, — Ryg ®)
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a; is the raw acceleration vector obtained from AHRS sensor.
R; is the raw rotation matrix. g is the acceleration of gravity.

The occlusion proportion includes both the external and inter-
nal occlusions. It is calculated by the ratio of sample points
satisfying Equation 3 and Equation 4 to sample points satis-
fying Equation 3.

We set the maximal number of CMA-ES iterations for each
frame as 18, number of variants per iteration as 15, with at
most 270 times of fitness computation in total. And the sam-
ple point clouds we use for tracking have 270 to 280 points.
In our test, the overall average time for tracking computation
in each frame is 16 milliseconds.

The first two tables in Figure 8 shows the average registra-
tion error on depth frame under different categories. It shows
that with the ground truth 3D model data, our system has very
good real time alignment when the moving speed is under 20
cm/s and the occlusion proportion under 15%. When the ve-
locity exceeds 30 c¢m/ s, and the occlusion proportion exceeds
15%, the average error can exceed 18 mm, but the system
is still able to track the object. And for the case of using
3D models reconstructed by KinectFusion, as expected, the
tracking error is overall a bit higher, but still feasible.

As to the performance in real-time projection alignment, we
demonstrate the prediction error in the third table. It is calcu-
lated by the average Euclidean distance between T2/ (the
prediction at the nth frame) and T}, 4e14y (the registration at
the future frame after the delay time). According to the re-
sult, the prediction error is not evident when the acceleration
is not very sharp. But it raises with the increase of accel-
eration value which conforms to the fact that when the user
is sharply changing the motion, e.g. shaking the object, the
projection can’t be aligned perfectly on the object.

Visual Effect

Figure 9. Tracking and occlusion culling performance observed in vir-
tual scene. The pictures are snapshots of real-timely updated virtual
scene. Picture 1 and 2 shows occlusion culling of user’s fingers. Picture
3 shows occlusion culling of a roll of tape. Picture 4 shows occlusion
culling of a piece of paper.

We set a virtual scene to visually monitor the tracking and
occlusion culling effect on the screen. As shown in Figure
9, in the scene, we set the virtual camera at the view of the
depth camera, render the infrared image as background and
update the 3D model’s position in real time. The numbers of
points in the point-cloud model we use for generating occlu-
sion facets are 3153, 5964, 5800 for the bust, the boat and
the bowl respectively. It can be visually perceived that the
occlusions are culled in high detail while providing a good
real-time tracking. For example, the contour of the user’s fin-
gers can be clearly seen in the picture 1 and 2 of Figure 9. The
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silhouettes are not very smooth yet, but it can be improved by
increasing the density of the point-cloud model.

Figure 10 shows the dynamic projection effect in the real
scene. The three models in the pictures are originally white,
but are shaded with artistic colorful textures. Users are asked
to hold the models in hand and freely translate and rotate
them. The result shows that the projection can stick on to
the real model under arbitrary pose and position. Small visu-
al artifacts of the alignment may occur when the object is in
sudden acceleration (e.g. Picture a4 in Figure 10).

Figure 10. Real projection mapping effect of Pmomo. The white plastic
models in the pictures are shaded with colorful textures by projection.
All the pictures are video snapshots of projection effect on moving ob-
jects.

Failure Handling

The system loses track when the object is occluded with very
big proportion or it is moved at extremely high speed. How-
ever, since our system will hold on to the previous “right”
position when losing track, it can keep tracking when instan-
t big occlusion is passing by (as shown in 11). Also since
the system performs semi-global tracking, when the system
fails tracking the object and projects the light bundles to an
incorrect place, our volunteers can help the system track back
the object in no longer than 15 seconds by moving it to the
lighted place.

TRACKING WITHOUT AHRS SENSOR

Generally, our tracking algorithm could work without AHRS
sensor. However, in such case more iterations would be re-
quired in CMA-ES algorithm since estimating both transla-
tion and rotation requires larger searching range. For ex-
treme cases (e.g. when the full 6-DOF transformation be-
tween frames is very large), the algorithm needs 0.5-1.5 sec-
onds to converge (the converged RMS error is around 10mm).
That severely interferes the real-time alignment of our system
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t=0.00s t=0.47s t=0.78s

t=0.87s t=0.93s t=1.10s

Figure 11.  Case of total occlusion. At the first frame the object is
tracked. Then someone walks through between the depth camera and
the target object, totally occluding the object. At the last frame, the
object is tracked again.

and influences its application. By adding an AHRS sensor in-
to the system to provide the rotation data, we can achieve a
much better performance at an economical price.

CONCLUSION

As a dynamic projection mapping system, Pmomo system has
four notable advantages: real-time alignment for random mo-
tion, arbitrary complex geometries, robustness to occlusions
and automatical occlusion culling from projection.

To achieve a robust tracking for complex shapes under oc-
clusions, we develop a depth image based tracking algorithm
with the novel features of complexity reducing, self-adaptive
occlusion handling and self-adaptive step-size control. And,
we also develop a facet-covering method to cull occlusions
from projection.

The experimental results show that Pmomo system can per-
form dynamic projection mapping at a very high interactive
level. And we believe the technique of Pmomo will lead to
a wide range of novel augmented reality applications in art,
education and commercials.

Our approach do have some limitations. First, occluders
should not be too close to the target object, otherwise it will
be unidentifiable on the depth image. Second, large external
occlusions might lead to the fail of tracking. When the occlu-
sion proportion exceeds a certain high level, the remaining
visible part will not be sufficient for tracking. This limita-
tion can be overcome by employing additional depth cameras
with other perspectives. Third, for deformable object, our
system can only tolerate small local deformation, as long as
such deformation does not impact the overall fitness error of
the visible sample points, but can’t handle big deformations.
Another limitation lies in that the camera and the projector
need to be settled close to each other and of similar view di-
rection so as to ensure they can view the same occlusions.

We are planning to develop more advanced features and ca-
pability for the system in the future: First, we want to further
optimize the system by parallelizing the tracking algorithm
on GPU so that the system can perform high-speed 6-DOF
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tracking only with depth camera. Second, we want to ex-
tend our system to support multiple objects simultaneously.
Third, we want to enable the possibility of a bigger scene and
a wider 360 degree projection by using multiple cameras and
projectors or steerable camera-projection systems [36].
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