Paper Presentation

Group 10: Austin Shin

Project Statement

The goal of this project is to develop a projection mapping prototype that projects patient data (eg. CT/MRI scan model) onto patient body in realtime.

Paper Selection

Yi Zhou, Shuangjiu Xiao, Ning Tang, Zhiyong Wei, and Xu Chen. 2016. **Pmomo: Projection Mapping on Movable 3D Object**. *In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 781-790.* DOI: https://doi.org/10.1145/2858036.2858329

- Dynamic projection mapping prototype that can handle 6DOF motion
- Accurate projections at an interactive level
- Done in real-time

PMOMO: Problem and Key Result

Problem: low accuracy of projection on target object, restricted range of motion, occlusions

PMOMO: Background and Previous Work

Projection mapping (SAR) - applying visual enhancements (color, texture, geometry) onto real-world objects

Tracking sensors - magnetic trackers, high-speed vision sensor with optical gaze controller, optical markers

Projection features - iteratively minimize distortion in distinct projected features

Registration - ICP

PMOMO: Setup and Calibration

Hardware

- Kinect 2.0
- AHRS sensor
- PC and projector

Calibration

- Virtual scene calibrated to real scene
- Calibrate AHRS sensor with Kinect
- Calibrate projector with IR and RGB camera

PMOMO: Tracking

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

• Process of taking results of each iteration and increasing / decreasing search space of next iteration based on covariance matrix

Step 1: calculate fitness score of each candidate solution. Step 2: isolates the best N% of population (purple). Step 3: Calculate covariance matrix of next generation using best solutions and mean. Step 4: Sample new set of candidate solutions using new mean and calculated covariance matrix

PMOMO: Tracking

Modified CMA-ES

- Find transformation matrix that best registers low-density point cloud to depth image
- Fitness score average RMS distance
- Adaptive step-size control
- Hardware delay management

$$F(A) = \sqrt{\frac{1}{n} \sum_{p_i \in S} \|\phi(\pi(Ap_i)) - Ap_i\|^2}$$

S - set of points, n - number of points in S, A - transformation at each iteration of CMA-ES, $p_i - i^{th}$ point, $\pi(p)$ - returns q, corresponding point in depth image, $\phi(q)$ - returns associated depth value

$$T_n^{predict} = T_n + f * (D_c + D_k) * (T_n - T_{n-1})$$

 $\begin{array}{l} T_n^{\ predict} - \ predicted \ translation, T_n - estimated \\ translation \ of \ n^{th} \ frame, T_n - estimated \ translation \ of \\ n-1^{th} \ frame, \ f - \ frame \ rate, D_c \ - \ computation \ delay, \\ D_k - \ Kinect \ delay \end{array}$

PMOMO: Generating Occlusion Facets

Occlusion Detection

- Determine which points from high-density point cloud are occluded:
 - Angle $(\vec{n}, \vec{pk}) \leq 90^{\circ}$
 - \circ (depth_{real}(P) depth_{virtual}(P)) > thr
 - $\bullet thr = max(F(A_n), minThr)$
- Determine facets associated with occluded points
- Color facets black

PMOMO: Results

- Low registration error at low velocity and low occlusion percentage
- Large registration error at high velocity and high occlusion percentage
- Performs slightly better than Kinect Fusion
- Translation prediction increases accuracy when acceleration is not high

Occlusion Proportion: 0% - 15% Acceleration: 0 - 30 cm/s ²				
Reg-Error (mm) Ground Truth	5.1	6.1	6.7	7.2
Reg-Error (mm) KinectFusion	5.7	7.5	8.8	9.3
Occlusion Proportio Acceleration: 0 - 30	on: 15% - 2) cm/s ²	.5%		
Velocity (cm/s)	0 - 10	10 - 20	20-30	30-50
Reg-Error (mm) Ground Truth	9.7	11.2	12.3	18.8
Reg-Error (mm) KinectFusion	10.7	13.2	15.6	29.7
Occlusion Proportio Velocity: 0 - 20 cm	on: 0% - 15 /s	i%		
Acceleration (cm/s ²)				
Reg-Error (mm) Ground Truth	5.0	5.6	9.0	
Pred-Error (mm) Ground Truth	3.4	4.0	11.3	
Reg-Error (mm) KinectFusion	6.3	6.8	12.3	
Pred-Error (mm) KinectFusion	4.8	6.5	15.0	

Assessing PMOMO Paper

Pros

- Adaptive occlusion threshold and CMA-ES step-size
- Accurate occlusion culling and translation prediction

Cons

[1] Yi et. al

- Requires many mesh models and highly accurate virtual scene
- Confusingly tabulated results

Future Steps

- Ways to reduce number of models needed during setup
- Comparison between rotation obtained using CMA-ES and AHRS sensor
- Expanding range of velocity and acceleration

Relevance of PMOMO Paper

- Good survey of previous work, especially tracking sensors
- Great starting point for registration (CMA-ES)
- Gives a baseline of results to compare my results with for tracking error

Conclusions

- Dynamic high-accuracy projection mapping is feasible
- Results depend on high level of model setup
- Modified CMA-ES method is a great enhancement
- Interfacing with projector is still a mystery

Any Questions?

References

 Yi Zhou, Shuangjiu Xiao, Ning Tang, Zhiyong Wei, and Xu Chen. 2016. Pmomo: Projection Mapping on Movable 3D Object. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 781-790. DOI: https://doi.org/10.1145/2858036.2858329