Paper Presentation

Group 10: Austin Shin

Project Statement

The goal of this project is to develop a projection mapping prototype that projects patient data (eg. CT/MRI scan model) onto patient body in realtime.

Paper Selection

Yi Zhou, Shuangjiu Xiao, Ning Tang, Zhiyong Wei, and Xu Chen. 2016. Pmomo:
Projection Mapping on Movable 3D Object. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 781-790. DOI: https://doi.org/10.1145/2858036.2858329

- Dynamic projection mapping prototype that can handle 6DOF motion
- Accurate projections at an interactive level
- Done in real-time

PMOMO: Problem and Key Result

Problem: low accuracy of projection on target object, restricted range of motion, occlusions

PMOMO: Background and Previous Work

Projection mapping (SAR) - applying visual enhancements (color, texture, geometry) onto real-world objects

Tracking sensors - magnetic trackers, high-speed vision sensor with optical gaze controller, optical markers

Projection features - iteratively minimize distortion in distinct projected features
Registration - ICP

PMOMO: Workflow

Figure 3. Overall work flow of the Pmomo system. Procedures with solid lines are run in real-time. Procedures with dash lines are done in preparation phase. A refers to the transform matrix of the target object.

PMOMO: Setup and Calibration

Hardware

- Kinect 2.0
- AHRS sensor
- PC and projector

Calibration

- Virtual scene calibrated to real scene
- Calibrate AHRS sensor with Kinect
- Calibrate projector with IR and RGB camera

PMOMO: Tracking

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Process of taking results of each iteration and increasing / decreasing search space of next iteration based on covariance matrix

Step 1

Step 2

Step 3

Step 4
http://blog.otoro.net/ 2017/10/29/visual-e volution-strategies/

Step 1: calculate fitness score of each candidate solution. Step 2: isolates the best N\% of population (purple). Step 3: Calculate covariance matrix of next generation using best solutions and mean. Step 4: Sample new set of candidate solutions using new mean and calculated covariance matrix

PMOMO: Tracking

Modified CMA-ES

- Find transformation matrix that best registers low-density point cloud to depth image
- Fitness score - average RMS distance
- Adaptive step-size control
- Hardware delay management

$$
F(A)=\sqrt{\frac{1}{n} \sum_{p_{i} \in S}\left\|\phi\left(\pi\left(A p_{i}\right)\right)-A p_{i}\right\|^{2}}
$$

S - set of points, n - number of points in S ,
A - transformation at each iteration of CMA-ES, $p_{i}-i^{\text {th }}$ point, $\pi(p)$ - returns q, corresponding point in depth image, $\phi(\mathrm{q})$ - returns associated depth value
$T_{n}^{\text {predict }}=T_{n}+f *\left(D_{c}+D_{k}\right) *\left(T_{n}-T_{n-1}\right)$
$T_{n}{ }^{\text {predict }}$ - predicted translation, T_{n} - estimated translation of $n^{\text {th }}$ frame, T_{n} - estimated translation of $\mathrm{n}-1^{\text {th }}$ frame, f - frame rate, D_{c} - computation delay, D_{k} - Kinect delay

PMOMO: Generating Occlusion Facets

Occlusion Detection

- Determine which points from high-density point cloud are occluded:
- Angle $(\vec{n}, \overrightarrow{p k}) \leq 90^{\circ}$
$\circ\left(\right.$ depth $_{\text {real }}(P)-$ depth $\left._{\text {virual }}(P)\right)>t h r$
- $t h r=\max \left(F\left(A_{n}\right), \min T h r\right)$
- Determine facets associated with occluded points
- Color facets black

PMOMO: Results

- Low registration error at low velocity and low occlusion percentage
- Large registration error at high velocity and high occlusion percentage
- Performs slightly better than Kinect Fusion
- Translation prediction increases accuracy when acceleration is not high

Occlusion Proportion: 0\% - 15\% Accelcration: $0-30 \mathrm{~cm} / \mathrm{s}^{2}$				
Velocity (cm / s)	0-10	10-20	20-30	30-50
Reg-Error (mm) Ground Truth	5.1	6.1	6.7	7.2
Reg-Error (mm) KinectFusion	5.7	7.5	8.8	9.3
Occlusion Proportion: 15\%-25\% Acceleration: $0-30 \mathrm{~cm} / \mathrm{s}^{2}$				
Velocity (cm / s)	0-10	10-20	20-30	30-50
Reg-Error (mm) Ground Truth	9.7	11.2	12.3	18.8
Reg-Error (mm) KinectFusion	10.7	13.2	15.6	29.7
Occlusion Proportion: 0\%-15\% Velocity: 0-20 cm/s				
Acceleration ($\mathrm{cm} / \mathrm{s}^{2}$)	0-20	20-40	40-60	
Reg-Error (mm) Ground Truth	5.0	5.6	9.0	
Pred-Error (mm) Ground Truth	3.4	4.0	11.3	
Reg-Error (mm) KinectFusion	6.3	6.8	12.3	
Pred-Error (mm) KinectFusion	4.8	6.5	15.0	

Assessing PMOMO Paper

Pros

- Adaptive occlusion threshold and CMA-ES step-size
- Accurate occlusion culling and translation prediction

Cons

- Requires many mesh models and highly accurate virtual scene
- Confusingly tabulated results

Future Steps

- Ways to reduce number of models needed during setup
- Comparison between rotation obtained using CMA-ES and AHRS sensor
- Expanding range of velocity and acceleration

Relevance of PMOMO Paper

- Good survey of previous work, especially tracking sensors
- Great starting point for registration (CMA-ES)
- Gives a baseline of results to compare my results with for tracking error

Conclusions

- Dynamic high-accuracy projection mapping is feasible
- Results depend on high level of model setup
- Modified CMA-ES method is a great enhancement
- Interfacing with projector is still a mystery

Any Questions?

References

1. Yi Zhou, Shuangjiu Xiao, Ning Tang, Zhiyong Wei, and Xu Chen. 2016. Pmomo: Projection Mapping on Movable 3D Object. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 781-790. DOI: https://doi.org/10.1145/2858036.2858329
