
 
 
 
 
 
 
 
 
 
Critical Review: Deep Clustering for Unsupervised Learning of 

Visual Features 
 

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. “Deep 
Clustering for Unsupervised Learning of Visual Features.” arXiv:1807.05520 

[cs.CV]. Proc. ECCV (2018). 
 
 
 
 
 
 
 
 
 
 
 

Group 13: Suraj Shah 
Mentors: Dr. Mathias Unberath, Dr. Jim Fackler, and Dr. Jules Bergmann 

April 23rd, 2019  
 
 
 
 
 
 
 
 
 
 
 



Project Overview 
Pneumonia continues to be a disease that has long-lasting and detrimental effects on the U.S. 
healthcare system. Nearly one million diagnoses are made per annum, with more than 50,000 
individuals dying from the disease each year2. Chest X-rays are the empirical standard for 
diagnosing pneumonia, however, the diagnosis for each individual patient is still heavily reliant 
on the knowledge and practice of radiologists. Furthermore, complications are much more 
exacerbated when patients are diagnosed with pneumonia in the ICU (Intensive Care Unit) or 
PICU (Pediatric Intensive Care Unit). Mechanical ventilation (and intubation) is a critical, life-
sustaining ICU therapy. “More than half of the patients in the ICU are ventilated the first 24 
hours after ICU admission.”3 Ventilation greatly increases the risk for acquiring pneumonia, 
known as VAP (Ventilator Associated Pneumonia); 10-20% of ICU patients are diagnosed with 
VAP annually and acquiring VAP increases the risk of mortality by 30%. Thus, it is imperative 
to build a system that is able to detect pneumonia for ventilated patients in the ICU that does not 
solely rely on radiologist overview and a system that we are able to diagnose the risk of 
pneumonia early on. My project aims to prepare an automatic classifier to be used in the ICU to 
monitor VAP. 
 
Paper Summary and Background 
This paper was submitted to ECCV (European Conference on Computer Vision) 2018 in aims of 
presenting DeepCluster, a novel clustering method that performs two objectives : 1) learns the 
parameters of a neural network and 2) clusters the assignments of the resulting features. 
DeepCluster was produced to combat the saturation in performance of pre-trained convolutional 
neural networks that are trained on a limited set of images. Thus, the DeepCluster objective is to 
produce a machine learning method that “can be trained on internet-scale datasets with no 
supervision.”1 The paper was submitted by members of the Facebook AI Research team, as the 
Facebook organization continues to be a leader in computer vision and applying techniques for 
classification. Given that this paper was published in late 2018, there is still advancements to be 
paved to apply the clustering techniques in both academic and industrial settings. However, the 
authors provide a GitHub open-source annotation for users to run on their own datasets. This will 
hopefully provide other researchers ways to test model(s) for themselves and prove the 
robustness of the group’s techniques. For my maximum deliverable, I plan on applying 
DeepCluster to my own dataset.  
 
Selection Motivation  
This paper aims to take a novel approach in how image classification is treated with the limited 
amount of standardization that is present with image annotations. For example, the most highly-
used convolutional neural networks are trained on ImageNet, which contains 1 million images to 
cover most types of classification (up to 1000 labels). To increase performance, one could 
feasibly increase the size of the dataset by a factor of 10-100x, but that would concern much 
more manual annotation, placing a burden on human effort and is much more extensive than 



what is currently available in the data science community. Thus, it is imperative to produce a 
model that can create generalizations for visual features to apply to any large-scale dataset that 
does not require supervision. This is critical to understanding of classification for my project 
because of the complexities of X-ray data when applied to pneumonia diagnoses with different 
demographics (specifically ages), ventilations, and machines. One goal of our collaborators is to 
be able to apply the data in the PICU – however, most of the publicly available data has only 
adult chest X-ray data. Thus, applying unsupervised clustering methods might unlock 
generalization of pneumonia features in my project that previously was not available with 
supervised learning.  
 
Technical Methods 
 
Overview  
Mathilde et. al. identifies that that convolutional neural networks (CNNs) are the best (and most 
popular choice) for “mapping raw images to a vector space of fixed dimensionality.”1 However, 
they suggest when parameters θ are sampled from Gaussian distributions, the CNN mapping 
does not produce proficient features because of the reliance of a strong prior on an input signal. 
The authors aim to build off the existing CNN work to cluster the CNN’s outputs using ‘pseudo-
labels’ to learn the true features of the input and group them without labels1. The approach used 
in clustering is k-means, a commonly accepted practice in clustering approaches which in the 
case of the CNN chosen by the authors, takes the set of features produced by the CNN, and 
clusters them into k distinct groups based on a certain geometric criterion. The actual geometric 
criterion is more or less irrelevant; what is of significance is the assignments based on proximity 
to the centroid of the criterion, assigning the features into ‘pseudo-labels’1. Once these labels are 
assigned through clustering, the DeepCluster is trained by switching between producing the 
pseudo-labels and updating the parameters of the CNN by predicting the pseudo-labels.  
 
Implementation and Architecture Design 
As mentioned before, the group uses previously trained CNN architectures to start with. 
Specifically, they use AlexNet and VGG-16. The difference between using the two models is 
based on the specifics of the architectures – AlexNet has 5 convolutional layers while VGG-16 
has 16 convolutional layers. Thus, it is a tradeoff between intensiveness of the training 
experiments when applying techniques on large-scale datasets over n epochs. Because clustering 
does not work well with color channels, the team preprocessed the data by “applying a fixed 
linear transformation based on Sobel filters to remove color and increase local contrast.”1 The 
main training data used here is the standard ImageNet framework which has 1.3M images 
divided into 1000 classes.  
 
In terms of parameter selection, Mathilde et. al. trains the network with fairly standard chosen 
parameters: dropout, a constant step size, an L2 penalization of the weights θ, and a momentum 



of 0.9. After the CNN is trained and produces features, the features are PCA-reduced to 256 
dimensions (still relatively hefty in my opinion), whitened and L2-normalized. The authors chose 
to update the clusters after each epoch of training (vs. updating clusters after m epochs), which 
proved to be pretty computationally intensive, as they trained the model for 500 epochs which 
took 12 days on a Pascal P100 GPU for AlexNet. However, results as shown in following 
sections proved to be optimal.  
 
Experiments and Results 
When actually measuring the effective of clustering on the processing of features and pseudo-
labels, Mathilde et. al. ran three different experiments as seen in the image below.  
 

 
NMI (Normalized Mutual Information) is the parameter that is measured in figures a and b 
above. NMI measures the information shared between two different assignments, i.e. a measure 
of independence. If NMI is 0, the two assignments are considered to be completely independent, 
and vice versa. Figure a) uses NMI to track the dependence between clusters and labels; given 
that this increases over the number of epochs, the features are capturing the information related 
to object classes. Figure b) measures the number of assignments between epochs, and since the 
NMI is increasing, this means the actual clusters predicted by k-means are stabilizing over time. 
Lastly, we see the impact of the k clusters on model performance; this peaks at 10,000 clusters, 
which is surprising given there are only 1000 image classifications in ImageNet, however, this 
probably means that over-segmentation is more important with clustering performance.  
 
Mathilde et. al. also provides a way to compare where supervised learning starts to become too 
dependent on the classes provided in the onset. They trained a linear classifier on top of frozen 
convolutional layers in DeepCluster to showcase these effects. On ImageNet, DeepCluster 
outperforms the state of the art from conv3 to conv5 layers by 3−5%; however, to truly visualize 
the predictive power here, when looking at the last layers of the network, improving performance 
from a standard AlexNet by 14%. This truly shows where labels start to become less significant 
and ‘pseudo-labels’ become more important.  
 



Finally, we look at the performance of DeepCluster across all state-of-the-art networks. As 
shown below, DeepCluster outperforms the best competitor on all relevant metrics, including 
image classification, object detection and semantic segmentation on both ImageNet and 
YFCC100M, which has a much more unbalanced object class than ImageNet.  

 
 
Beyond training on ImageNet, Mathilde et. al. validates the results on a much smaller set 
(PASCAL VOC, 2500 images). They tested both AlexNet and VGG-16 architectures here. 
VGG-16 outperforms given the deeper layer approach (however the tradeoff of time and 
computation). 
 

 
 
 
Personal Critique 
 
Positives  
 
Approach: while many researchers take for granted the robustness of CNN models that are 
trained on ImageNet, many only apply those techniques to their own datasets with adjustments in 
the parameters used in the specific training on respective datasets. While this shows how 
empirically powerful these pre-trained models are, there is an unmet need to go beyond and try 
to improve accuracy on large-scale multi-classification. Thus, it is both surprising and exciting to 
see researchers improve upon these models by not only training on other datasets, but by 
applying techniques previously not used in image classification. This builds a strong framework 
for applications of clustering in image classification, and perhaps a rethinking of how we 



approach this problem from the onset. The approach the researchers take here is both unique and 
pioneering, leading the way for an expansion of work in class segmentation.  
 
Training and Testing Methods  
Mathilde et. al. recognizes that the empirical models that they use as a base for classification 
(AlexNet and VGG-16) are both trained on ImageNet, which is a very clean dataset that is 
balanced evenly within object categories and annotated. In practice, most datasets will never be 
very balanced (for example, in my project, a large majority of the images are classified as “No 
Finding”), and will never be annotated as nicely, probably with much sparsity. Thus, it is 
imperative to train the model on datasets that will be skewed towards both clusters and object 
classes to actually have real-world applications on many datasets. Thus, the researchers chose to 
train DeepCluster on YFCC100M, which is randomly chosen from uncured Flickr images, 
inherently implying a severe imbalance in both the clustering and classification of the images. 
This shows that the authors understand the limitations of taking the models at face value and 
chose to go beyond to improve the performance of the DeepCluster. Being such, they were able 
to validate that DeepCluster can withstand many changes in classification distribution, as 
performance outperformed state-of-art models on the YFCC100M dataset. Furthermore, the 
authors performed validation studies for semantic segmentation on Pascal VOC 2012 which is a 
small set of images (2500) designed to simulate more of a real-life example. DeepCluster proved 
to robustly perform here as well, out-performing all other models again.  
 
Linear Activation of Specific Layers: the project also aimed to determine the performance of 
specific convolutional layers, treating each layer as a step-by-step approach, whilst tying together 
with the end model performance. By digging deeper into how the DeepCluster updates weights 
for feature output at each layer, we are able to see where label-specific tasks become redundant 
and cumbersome (as in traditional CNNs), and where a clustering approach mitigates these 
supervised problems. By not only comparing performance at the very end output of the model, 
but in the layers of the model as well, the authors are not treating the DeepCluster as a blackbox 
approach. They are identifying the exact places where we see performance improvement, which 
can be used in the future to better train weights and pooling if necessary.  
 
Areas of Improvement  
 
Lack of Background into Image Clustering: while the paper continually references k-means and 
the approaches to k-means that have proven to produce the most optimal results, there is little 
discussion into other approaches to clustering (or even k-means) that have performed 
successfully on image work. I will give the others the benefit of the doubt here given that most 
classification approaches on images use only CNNs; however, there clustering approaches to 
validate the specificities of how images can be both over and under segmented. A literature 



review or brief review of how clustering has worked on image datasets and where the state-of-art 
lies would have been helpful for a novice reader.  
 
Visual Schematics: to best understand how the clustering approach works on top of the CNN in 
DeepCluster, it would have been useful to have a visual schematic to see how the weights are 
updated through backpropagation after clustering and separation into pseudo-labels occurs after 
the k-means approach is utilized. The paper dedicates a decent amount of text space into how the 
architecture is designed but to those who aren’t as familiar with the combination of the 
approaches utilized here, it would be a very helpful supplement to have a visual representation of 
the architecture.  
 
Sole use of hard assignments: k-means is a hard assignment approach, which means each point is 
assigned to one and only one cluster. With a soft assignment approach, such as weighed K-
means or a Gaussian Mixture Model with Expectation Maximization, each point is assigned to 
all the clusters with weighted probabilities. I understand the point of using k-means because 
labels here are hard image classes, thus the authors would want to recreate that with the pseudo-
labels. However, it would have been useful to see if a probability-based method would have 
affected performance (either positively or negatively). Given that the assignments were updated 
at each epoch, backpropagating to the weights of the network to finetune end clustering would 
have looked much different with soft clustering than hard clustering, perhaps giving the model 
more flexibility in feature output without assuming the true number of clusters.  
 
Resetting Clusters after each epoch: DeepCluster reassigns the clusters after each epoch, which is 
very computationally intensive and perhaps inefficient given the number of epochs that the 
authors use to fully train the model. Perhaps a better approach would be to be compute the 
sample overlap between old and new clusters (the Hungarian algorithm) and assign the cluster 
IDs translationally and a full reset would not be necessary. This is mainly a critique of the 
efficiency of the training method and not a necessarily an improvement on overall performance.  
 
Takeaways  

• Learned how clustering can be applied on top of a CNN to produce improved 
performance in overall classification  

• An improved understanding of the challenges of using certain image datasets and how to 
train and validate models over a variety of datasets that have significantly different 
characteristics to produce the best performance and allow the model to tactfully handle 
most if not all inputs  

• The limitations with different architectures of CNNs (differences in number of layers, 
hyperparameters, etc.) and how to best optimize for the task at hand, including handling 
specific layers  



• Learned how to best preprocess image data for architectures that aren’t necessarily 
proficient in handling color channels  

 
Future Steps  

• Future clustering approaches can replace the hard k-means with either weighted K-means 
or GMM-EM (Gaussian Mixture Model with Expectation Maximization) to prevent 
choosing a hard number of clusters at each point and to allow more distribution in weight 
updating  

• Test on purely unannotated and un-labeled data to see if similar performance can be 
achieved  

• Establish similar performance levels with refined networks such as ResNet and DenseNet 
for both improvements in efficiency and performance  

 
Conclusion 
Overall, I learned immensely from this paper on how to build on top of my current image 
architecture to produce potentially improved performance in simple image classification. It 
provided a concise yet informative lens into the approach of building such a model and how they 
actually verified results. I’m looking forward to applying their techniques towards my maximum 
deliverable 
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