Augmentation of Haptic Guidance into Virtual-Reality Surgical Simulators

Group 14

Paper Presentation

Eric Cao

Project Summary

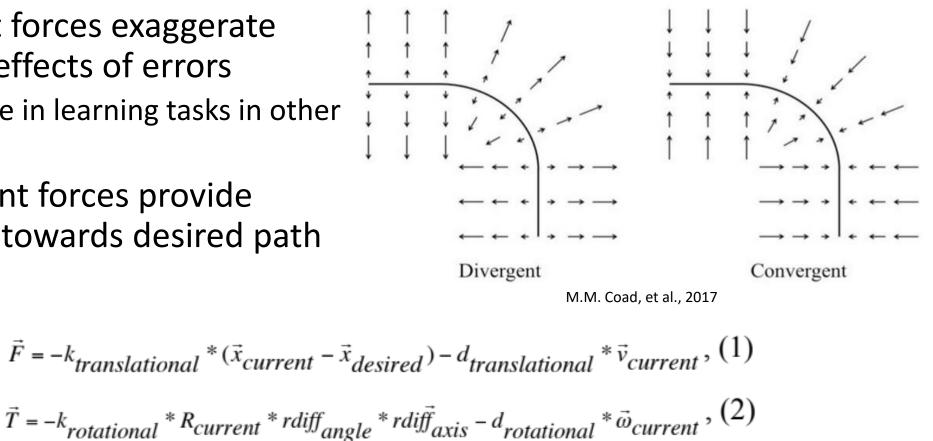
- Problem:
 - Training to perform robotic minimally invasive surgery is time consuming and lacking in real-time feedback
- Objective:
 - To implement haptic feedback into surgical simulators and to test this feedback in a user study

Paper Selection

- Training in divergent and convergent force fields during 6-DoF teleoperation with a robot-assisted surgical system
 - M. M. Coad et al., "Training in divergent and convergent force fields during 6dof teleoperation with a robot-assisted surgical system," IEEE World Haptics Conf., 2017, pp. 195–200.
- Similar experimental setup and similar feedback methods
- Well designed user study that serves as a starting point for the design of our own user study

Training in divergent and convergent force fields during 6-DOF teleoperation with a robot-assisted surgical system

Margaret M. Coad, Allison M. Okamura, Sherry Wren, Yoav Mintz, Thomas S. Lendvay, Anthony M. Jarc, and Ilana Nisky

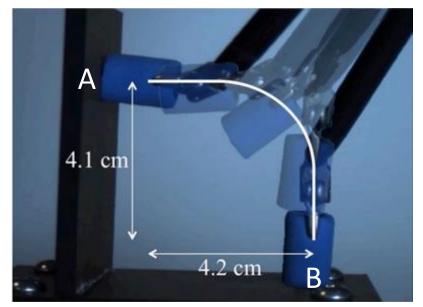

Stanford University

Summary

- "Examined the effect of divergent and convergent force/torque fields on the learning of novice non-medical participants during a 6-DoF peg transfer task using the da Vinci Research Kit (dVRK)" M.M. Coad, et al., 2017
 - Divergent and convergent forces
 - Peg transfer task

Divergent and Convergent Force Fields

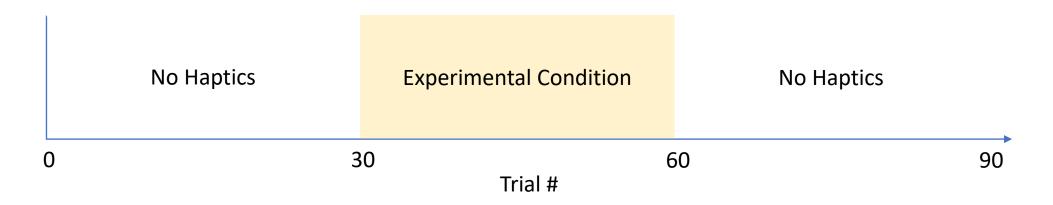
- Divergent forces exaggerate negative effects of errors
 - Effective in learning tasks in other fields
- Convergent forces provide guidance towards desired path



M. M. Coad et al., "Training in divergent and convergent force fields during 6-dof teleoperation with a robot-assisted surgical system," IEEE World Haptics Conf., 2017, pp. 195–200.

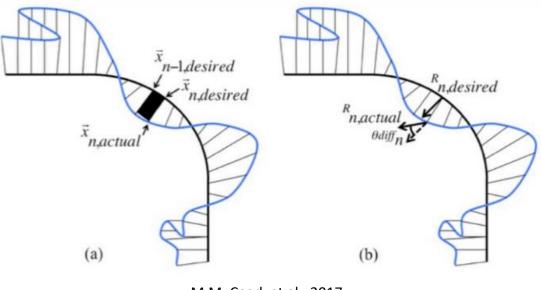
M.M. Coad, et al., 2017

Methods - Task


- Peg Transfer task on dVRK
- Participants are shown picture of desired path and video of several good transfers
- 3 sets of 30 trials each (90 trials total)
- Trials alternate between moving A->B and B->A

M.M. Coad, et al., 2017

User Study


- 3 sets of 30 trials (90 trials total)
 - Set 1: No Haptic Feedback
 - Set 2: Experimental Condition (control, divergent, or convergent)
 - Set 3: No Haptic Feedback

Performance Metrics

- Trial time
- Translational path error
 - Related to classical measure of economy of motion
- Rotational path error
 - Similar to translational
- Combined path error times trial time
 - Combination of other 3 metrics

M.M. Coad, et al., 2017

Results

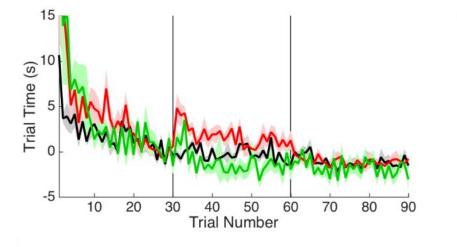


TABLE I.BASELINE ABILITIES IN TRIALS 25-30 (MEANS AND
STANDARD ERRORS) THAT WERE SUBTRACTED FROM DATA.

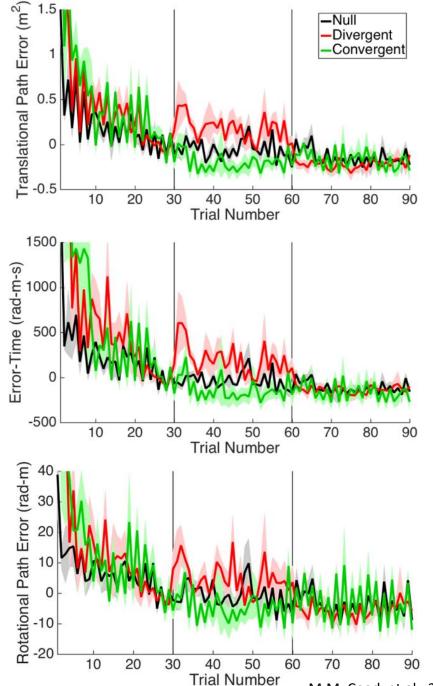
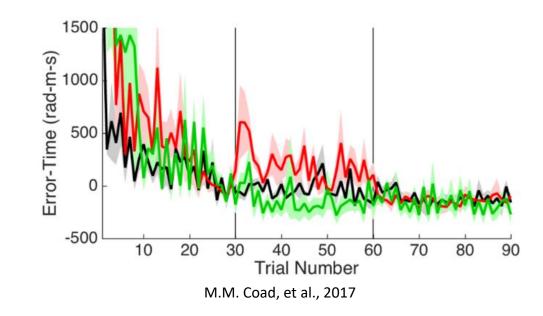

	Null	Divergent	Convergent
Trial Time (s)	6.3 (±1.2)	6.6 (±0.9)	7.7 (±1.0)
Trans. Path Error (m ²)	0.52 (±0.08)	0.60 (±0.10)	0.60 (±0.04)
Rot. Path Error (rad-m)	20 (±3)	21 (±3)	22 (±3)
Error-Time (rad-m-s)	300 (±100)	330 (±80)	390 (±80)

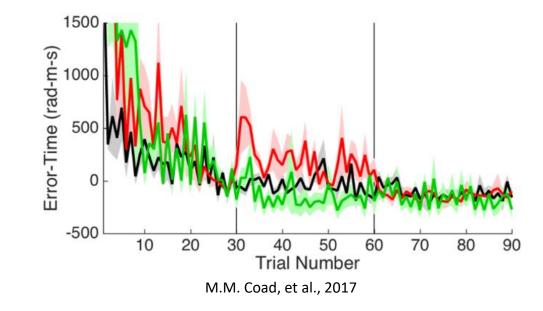
TABLE II.Improvements from trials 1-6 to 25-30 and 25-30to 85-90 (p-values are from the Wilcoxon rank sum test).

	Trials 1-6 to 25-30	Trials 25-30 to 85-90
Trial Time (s)	9.01 (p < 0.001)	1.46 (p < 0.001)
Trans. Path Error (m ²)	1.13 (p < 0.001)	0.19 (p < 0.001)
Rot. Path Error (rad-m)	37.7 (p < 0.001)	3.8 (p = 0.005)
Error-Time (rad-m-s)	2600 (p < 0.001)	140 (p < 0.001)

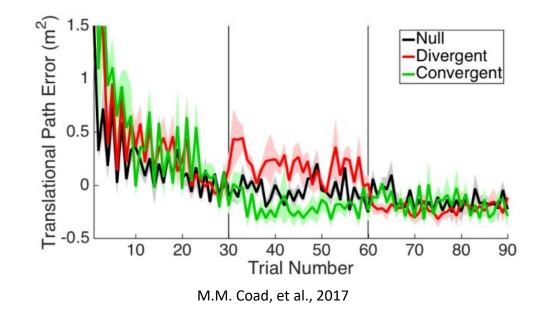
M.M. Coad, et al., 2017


M. M. Coad et al., "Training in divergent and convergent force fields during 6-dof teleoperation with a robot-assisted surgical system," IEEE World Haptics Conf., 2017, pp. 195–200.

M.M. Coad, et al., 2017


Main Result

• There was no statistically significant difference between the performance of the groups on any metrics at the end of the experiment.


More Results

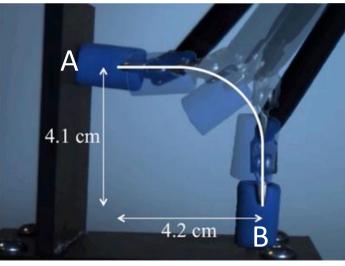
• During experimental condition set, divergent field group performed the worst and convergent performed the best

More Results

 Divergent group performed better than other groups on translational path error at the start of the 3rd session

Paper Assessment

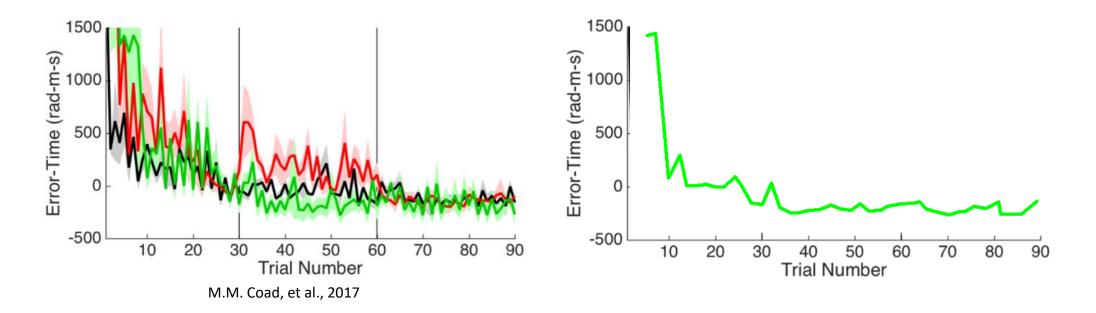
Good


- Clear description of experimental task and setup
- Force field equations with constants given

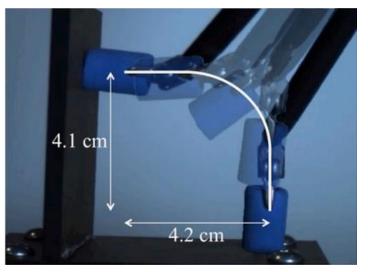
Improvements

- A->B, B->A task oscillations, unseparated graphs
- Only haptics, no other feedback
- Sets of trials too long

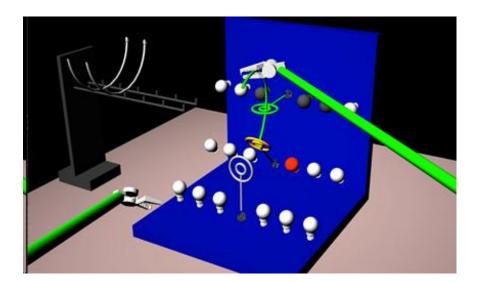
Task Oscillations


- Odd # Trials: Transfer peg from location A to location B
- Even # Trials: Transfer peg from location B back to location A
- Task is slightly different and may not be comparable

M.M. Coad, et al., 2017

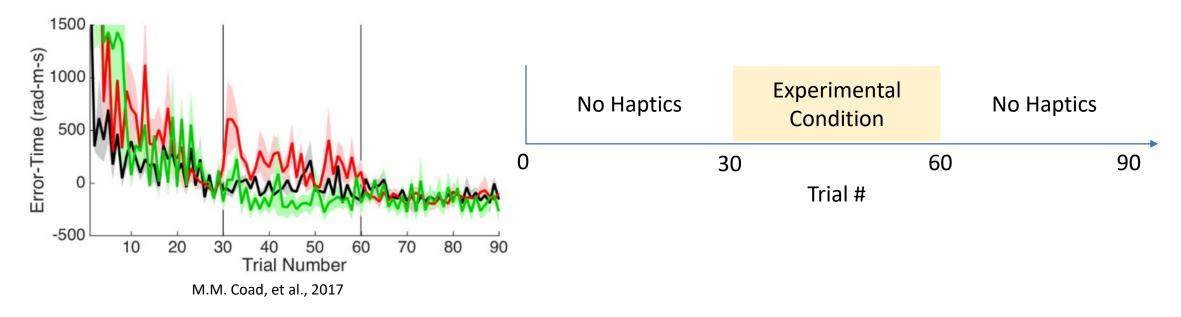

Unseparated Graphs

- Oscillating task results not separated into different graphs
- Resulted in oscillating data

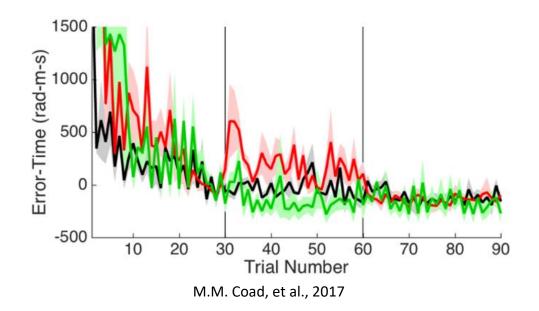


Only Haptic Feedback

- Optimal path is unclear
- Provides feedback to an unknown path



M.M. Coad, et al., 2017


Trial Set Lengths

 Greatest improvement in first set of trials, before experimental condition began

Normalization by Subject Baseline Ability

• Each participant's baseline ability is subtracted from their own data

TABLE I.BASELINE ABILITIES IN TRIALS 25-30 (MEANS AND
STANDARD ERRORS) THAT WERE SUBTRACTED FROM DATA.

	Null	Divergent	Convergent
Trial Time (s)	6.3 (±1.2)	6.6 (±0.9)	7.7 (±1.0)
Trans. Path Error (m ²)	0.52 (±0.08)	0.60 (±0.10)	0.60 (±0.04)
Rot. Path Error (rad-m)	20 (±3)	21 (±3)	22 (±3)
Error-Time (rad-m-s)	300 (±100)	330 (±80)	390 (±80)

M.M. Coad, et al., 2017

Conclusions

• Well designed user study that serves as a starting point for the design of our own user study

Lessons Learned

- Keep trials as similar as possible
- Consider using haptic feedback in conjunction with other feedback
- Find suitable trial lengths for the experimental task
- Consider normalizing by each subject

References