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Abstract— The technical skills of surgeons directly affect 
patient outcomes, yet how to train surgeons in a way that 
maximizes their learning speed and optimizes their 
performance is an open question. Recent studies in human 
motor learning have shown benefits of using force fields during 
training in point-to-point reaching tasks. Teleoperation systems 
enable the application of these force fields during the learning 
of more complex and real-world activities. We performed a 
study in which participants used the da Vinci Research Kit, a 
teleoperated robot-assisted surgical system, to perform a peg 
transfer task – a standard manipulation task used in minimally 
invasive surgery training. We investigated the effect on 
learning of training in three different groups: (1) without 
applying any force, (2) with a divergent force field, which 
pushes the user away from the desired path if they deviate from 
it, and (3) with a convergent force field, which pushes the user 
back to the desired path. We found no statistically significant 
differences in performance among the different training groups 
at the end of the experiment, but some differences were evident 
throughout the training. Thus, training in the divergent and 
convergent fields may involve different learning mechanisms, 
but does not worsen performance.   

I. INTRODUCTION 

Surgery is a complex sensorimotor skill: surgeons must 
master hand-eye coordination, sensory integration, and fine 
motor control to create the best possible outcome for their 
patients. A successful surgical procedure requires clinical and 
technical skills, identification of anatomical structures, and 
precise interaction with tissue through dissection, retraction, 
suturing, and other maneuvers. Sub-optimal technical skills 
decrease patient safety and may result in adverse surgical 
outcomes [1].  

In teleoperated robot-assisted minimally invasive surgery 
(RMIS), the surgeon grasps a pair of robotic master 
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manipulators that control the movements of the instruments 
and the endoscopic camera inside the abdomen of the patient. 
Compared to open surgery, the patient benefits from reduced 
pain, injury, and recovery time. Compared to manual 
laparoscopy, intuitive and dexterous motion, motion scaling, 
and enhanced visualization make teleoperated RMIS surgery 
easier for surgeons and safer for patients [2], leading to wide 
adoption across surgical disciplines [3, 4]. However, 
teleoperation also has drawbacks: surgeons need to learn new 
dynamics of the master manipulators and instruments [5, 6, 
7], and to compensate for missing haptic feedback [8]. Until 
teleoperation systems become completely transparent and 
surgeons feel as if the instruments are their hands [9], training 
in RMIS is needed to teach surgeons how to exploit the 
system’s advantages while overcoming its challenges. 

Conventional surgeon training curricula are largely 
defined by expert opinion and consensus, and are based on 
the apprenticeship model [10]. They seek to teach fine motor 
skills through repetition of simulation, inanimate, animal, or 
cadaveric training exercises until an acceptable proficiency is 
achieved. Continued prevalence of operative inefficiencies 
and errors, as well as pressure on trainee work hours [11, 12], 
suggests that these curricula need to be improved. To that 
end, there is substantial effort to design and validate new 
training curricula [13, 14], to develop surgeon warm-up 
strategies [15], and to use virtual and augmented reality 
simulators [16]. Nevertheless, there are many open questions 
about what comprises surgical skill and what is the most 
efficient strategy to improve it [17]. 

Due to its teleoperated nature, RMIS allows for recording 
of surgeon behavior to model surgeon performance. 
Movement and force data in RMIS have been used to classify 
surgical skill [15, 18, 19, 20], and recently, metrics grounded 
in behavioral neuroscience and human sensorimotor control 
have shown promise [5, 6, 21, 22]. Moreover, RMIS creates 
an opportunity to provide assistance and improve the speed 
and quality of surgical training: the master manipulators of 
RMIS systems are capable of applying forces to the hands of 
the surgeon, and the video stream may be altered to provide 
augmented visual information [23]. In this way, novel 
methods to improve surgeon training may provide guidance 
towards a desired path or temporal trajectory [24], make the 
task easier and potentially expedite learning [25], exaggerate 
errors or add resistance to make the task more difficult [26, 
27], or even provide random perturbations. To efficiently 
navigate this design space, it may be useful to harness 
computational models of sensorimotor learning theories [28]. 

Recent findings in motor learning have identified various 
factors, such as the error displayed to the learner or the 
variability of movement, that affect the rate and extent of 
learning of a motor skill and adaptation to altered conditions 
[29, 30, 31]. Related research in motor rehabilitation and skill 
acquisition [27, 32, 33] has shown that people can learn to 

Training in Divergent and Convergent Force Fields During 
6-DOF Teleoperation with a Robot-Assisted Surgical System 

Margaret M. Coad, Allison M. Okamura, Sherry Wren,   
Yoav Mintz, Thomas S. Lendvay, Anthony M. Jarc, and Ilana Nisky 

195



  

perform tasks faster and more accurately when their 
environment is augmented to exaggerate negative effects of 
errors [34]. Error augmentation techniques have yet to be 
applied to RMIS; the closest application has been a 
translational micromanipulation task [26].  

In the current paper, we present an investigation of error 
augmentation in a teleoperated RMIS system. We examined 
the effect of null, divergent, and convergent force/torque 
fields on the learning of novice non-medical participants 
during a 6-DOF peg transfer task using the da Vinci Research 
Kit. The peg transfer task is important for surgical training 
because transfer of objects is frequently done in an operative 
setting during manipulation and passing a suture needle or 
tissue, and it is part of the Fundamentals in Laparoscopic 
Surgery (FLS) tasks [35].  We hypothesized that training in a 
divergent force/torque field may lead to enhanced 
performance.  

II. METHODS 

A. Surgical Robotic Platform 
The experiment used the da Vinci Research Kit (dVRK), 

a teleoperated robot-assisted surgical system [7, 36]. 
Participants sat at the master console with their finger and 
thumb in the straps of the right master gripper, as shown in 
Figure 1. They looked into the stereoscopic viewer to see a 3-
D real-time video of the patient-side instrument. The position 
and orientation of the instrument gripper were controlled 
using proportional-derivative (PD) control based on the 
position and orientation of the master gripper. All 
experiments were carried out with the teleoperation scale 
factor set so that the change in position of the patient-side 
instrument was 0.6 times the change in position of the master, 
which is within the range of scale factors used on the clinical 
da Vinci Surgical System. Participants were not allowed to 
use the clutch to change the position mapping between 
master and slave, move the camera, or change the zoom 
level. All experiments were carried out using a mega needle 
driver as the patient-side instrument. 

B. Procedure  
Participants were asked to transfer a foam cylinder 

between two metal pegs, similar to a standard MIS training 
task. They were instructed to do their best to follow the 
desired path shown in Figure 2. This desired path was 
defined as a series of 6-DOF poses (3-DOF in position and 3-
DOF in orientation). The white line in Figure 2 indicates the 
desired position of the tip of the gripper. The orientation of 
the gripper should be horizontal at the upper left end of the 
path and vertical at the lower right end of the path. 

Before the participants began the experiment, they were 
introduced to the dVRK and shown a picture of the desired 
path as well as a video of several good cylinder transfers. For 
each trial, they were instructed to transfer the cylinder from 
one peg to the other and then release their grasp of the 
cylinder and move away from it before getting closer and 
grasping it for the next trial. Participants were not allowed to 
close the gripper on the cylinder until they were close enough 
to the desired starting position and orientation for that trial. 
The background of the stereoscopic viewer’s video screen 
changed color to help participants through the segments of 
the task and ensure that they did not grasp the cylinder from a 
wrong starting position or orientation. The screen was yellow 

when they needed to get closer to the starting position and/or 
orientation (as measured at the master). It turned green when 
they were within 1.25 cm of the desired starting position and 
within 0.5 radians of the desired starting orientation for that 
trial, and then white when they closed the gripper on the 
cylinder. Once they placed the cylinder on the other peg and 
opened the gripper within 2.5 cm of the desired ending 
position, the screen turned red. When the participants moved 
2.5 cm away from the ending position, the screen turned back 
to yellow, indicating that they should get closer to the starting 
position and/or orientation for the next trial. Participants were 
instructed to complete the portion of the task while the screen 
was white as accurately and quickly as possible. 

Each participant completed a total of 90 trials of cylinder 
transfer between the two pegs. They alternated between 
moving the cylinder from lower right to upper left and 
moving the cylinder from upper left to lower right, such that 
45 trials were performed in each direction. Participants were 

 
Figure 1.  The da Vinci Research Kit. (a) A participant sits at the master 
console and moves the gripper while looking through the stereoscopic 
viewer to see a real time video of the patient-side robot, as shown in the 
inset. (b) The patient-side robot is in the view of the stereoscopic cameras 
as the participant controls it to move a cylinder between two pegs. 

 
Figure 2.  The 6-DOF path that participants were asked to follow. The 
position of the tip of the gripper followed a straight line, a quarter of an 
ellipse, and then another straight line. The orientation of the gripper was 
horizontal along the upper left straight line, and then followed a uniform 
rate of rotation until it reached vertical at the lower right straight line. 
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given a short break after each session of 30 trials. The control 
group completed all 90 trials with no force field. The two test 
groups received force feedback applied to the master gripper 
during the second session (trials 31-60). Force feedback was 
only applied when the gripper was closed on the cylinder. For 
one test group, a divergent force/torque field was applied, 
which pushed the participant’s hand away from the path in 
the direction that they were off the path, with magnitude 
proportional to their distance away from the path (Figure 3). 
This force/torque field was applied in both position and 
orientation, with a 3-DOF force vector applied based on how 
far their position was from the position of the closest point on 
the desired path, and with a 3-DOF torque vector applied 
based on how far their orientation was from the orientation of 
the closest point on the desired path. For the other test group, 
a convergent force/torque field was applied, which was the 
same as the divergent force/torque field, except that it pushed 
the participant’s hand towards the path, rather than away 
from it (Figure 3). Participants in the two test groups were 
told before the second session that they would feel a force 
field pushing them away from or towards the desired path, 
and that they should still do their best to move as accurately 
and quickly as possible. 

C. Force Field Algorithm 
The desired path for the 6-DOF configuration of the right 

master gripper was encoded as 200 data points, each of which 
contained a position and a rotation matrix. The desired 
positions between data points were generated by joining two 
line segments with a quarter of an ellipse. The desired 
orientations between data points were generated by linearly 
interpolating (using the angle-axis representation) between a 
starting and an ending rotation matrix on the curved section 
of the path and holding the rotation matrices constant on the 
straight sections of the path. 

Each time through the software control loop, which ran at 
1000 Hz, the current master gripper position was compared 
with all 200 positions stored in the desired path to find the 
closest point. That data point’s position vector !xdesired  and 
rotation matrix Rdesired were used to calculate the appropriate 
force and torque vectors to apply to the master gripper.  

The force vector was calculated as 
!
F = −ktranslational * (

!xcurrent −
!xdesired )− dtranslational *

!vcurrent , (1) 

where ktranslational is the translational spring constant, !xcurrent  is 
the 3-DOF current position vector, dtranslational is the 
translational damping constant, and !vcurrent  is the current 3-
DOF velocity vector. A small damping constant was 
necessary to prevent the master manipulator from going 
unstable when the spring constant was nonzero. For all three 
force fields, the translational damping constant was 5 N-s/m. 
The translational spring constant was 0 N/m for the null field, 
-60 N/m for the divergent field, and 60 N/m for the 
convergent field. 

The torque vector was calculated analogously using 
!
T = −krotational * Rcurrent * rdiffangle * rdif

!
faxis − drotational *

!
ωcurrent

, (2) 

where krotational is the rotational spring constant, Rcurrent is the 
current rotation matrix, rdiffangle and rdif

!
faxis are the angle-axis 

representation of the matrix Rcurrent
T*Rdesired, drotational is the 

rotational damping constant, and !ωcurrent is the current angular 
velocity vector. For all three force fields, the rotational 
damping constant was 0.001 N-m-s/rad. The rotational spring 
constant was 0 N-m/rad for the null field, -0.03 N-m/rad for 
the divergent field, and 0.03 N-m/rad for the convergent 
field. 

D. Performance Metrics 
To evaluate user performance, we calculated trial time, 

translational path error, rotational path error, and combined 
path error multiplied by trial time (which we refer to as error-
time) for each trial. 

Trial time was calculated as the time from when the 
master gripper was closed within 1.25 cm of the desired 
starting position and within 0.5 radians of the desired starting 
orientation to when the gripper was opened within 2.5 cm of 
the desired ending position. This metric quantifies speed and 
is a classical measure of surgical skill [16]. 

Translational path error was calculated as the area of a 
surface between the actual path and the desired path, as 
shown in Figure 4a. For each position data point on the actual 
path ( !xn,actual ), we calculated the distance to the closest point 
on the desired path ( !xn,desired ). We also calculated the distance 
between the data point’s closest point on the desired path and 
the previous data point’s closest point on the desired path (
!xn−1,desired ). We multiplied these two distances to get an area 
for each data point on the actual path, and then we summed 
the areas for all of the data points on the actual path to get the 
final metric. This metric quantifies accuracy, and is related to 
the classical measure of economy of motion [16]. 

Rotational path error was calculated analogously to 
translational path error, as shown in Figure 4b, except that we 
used an angle difference rather than a distance between the 
actual and desired data points. For each orientation data point 
in the actual path (Rn,actual), we calculated the angle difference 
to the closest point on the desired path’s orientation 
(Rn,desired). We multiplied this by the previously calculated 
distance between the data point’s closest point on the desired 
path and the previous data point’s closest point on the desired 
path to get a “rotational area” in units of rad-m. We then 
summed these rotational areas for all of the data points on the 

 
Figure 3.  2-D representation of the divergent and convergent force fields 
that were applied in 3-D to the master gripper. In the divergent force field, 
forces were applied pointing away from the desired path, with magnitude 
proportional to the distance of the gripper away from the closest point on 
the desired path. In the convergent force field, the forces had the same 
magnitude as those in the divergent force field, but they pointed towards the 
path. A torque field was also applied in both the divergent and convergent 
cases, with magnitude proportional to the angle difference between the 
gripper orientation and the orientation of the closest point on the path. 
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actual path to get the final metric. This metric quantifies 
rotational accuracy, an important aspect of surgical skill [20]. 

Combined path error times trial time (called error-time) 
was calculated as a combination of the other three metrics. 
For each trial, we added rotational path error and a constant 
factor of 39 rad/m multiplied by translational path error to get 
combined path error. The constant factor was chosen to be 
equal to the ratio of the average rotational path error and the 
average translational path error across all subjects and all 
trials. We multiplied combined path error by trial time to get 
the final metric of error-time. This metric takes into account 
the speed-accuracy tradeoff [37] to provide an overall 
measure of performance. It also reflects the importance of 
balancing accuracy with time for the successful and fast 
completion of surgical procedures.  

E. Participants 
The experiment was conducted with a total of fifteen 

right-handed participants, nine male and six female, aged 
between 24 and 43 years old. Seven of the participants had 
never operated a da Vinci Surgical System or dVRK before, 
four had used it once or twice for a laboratory demonstration, 
and four had participated in a prior experiment with a dVRK. 
Participants were divided into three groups of five, with an 
approximately even distribution of experience levels in each 
group. The protocol for this study was approved by Stanford 
University’s Institutional Review Board, and participants 
gave informed consent. 

F. Statistical Analysis 
To determine the effects of training under different 

conditions on the metrics described above, we performed 
Kruskal-Wallis (KW) tests with the different metrics as 
dependent variables, and the training group as independent 
factor.  Post hoc tests using Dunn’s test were used to 
determine significant differences between pairs of groups. 
To determine the improvement within each group, we used 
the Wilcoxon rank sum test. We chose these non-parametric 
tests because several of the metrics were not normally 
distributed and the variances of the groups were not always 
equal. To make sure that the statistical power was consistent 
across tests, we always used the nonparametric tests. 
Statistical analysis was conducted using Matlab 

kruskalwallis(), multcompare(), and 
ranksum() functions. Statistically significant effects were 
evaluated at p < 0.05.  

III. RESULTS AND DISCUSSION 

Figure 5 presents adaptation curves for each of the four 
metrics, averaged trial-by-trial across all five participants in 
each of the three groups, with the respective standard errors 
depicted as the shaded area around each curve. In order to 
correct for small differences in starting ability between 
participants, each participant’s baseline ability, measured as 
their average performance on each metric during the end of 
the first session (trials 25-30), was subtracted from their data. 
Table 1 shows the averages and standard errors of the values 
that were subtracted off for each group and each metric. 

Movement variability decreased from the first session 
to the third session for all groups and all metrics. 
Variability among participants was lower in the third session 
than in the first session. For translational path error, the 
average standard error among all participants was 0.12 m2 
during trials 1-30 and decreased to 0.05 m2 during trials 61-
90 (Wilcoxon rank sum test, p < 0.001), indicating that 
participant movements became more uniform as they 
practiced the task. Trial-to-trial variability for individual 
participants also decreased, with participants averaging 0.13 
m2 of standard error among trials 1-30 for translational path 
error and 0.03 m2 among trials 61-90 (Wilcoxon rank sum 
test, p < 0.001). Note that the zigzag pattern of the adaptation 
curve is due to the fact that every other trial was a different 
movement: from bottom right to upper left vs. upper left to 
bottom right. 

All groups improved dramatically on all metrics 
within the first session and less dramatically throughout 
the rest of the experiment. Table 2 shows average 
improvements across all participants from trials 1-6 to 25-30 
and from trials 25-30 to 85-90 for each metric. For 
translational path error, participants improved by 1.13 m2 
from trials 1-6 to trials 25-30 and then improved by only 0.19 
m2 from trials 25-30 to trials 85-90. Thus, the majority of the 
learning had occurred before the training in the convergent or 
divergent fields had begun, but learning still continued at a 
slower pace throughout the experiment. 

During the second session, the divergent field group 
performed the worst and the convergent field group 
performed the best on all metrics. During trials 31-60, 
there was a statistically significant effect of training group for 
trial time (KW test χ2

14 = 10.3, p = 0.006), translational path 
error (KW test χ2

14 = 12.5, p = 0.002), and error-time (KW 
test χ2

14 = 7.5, p = 0.02), but not for rotational path error (KW 
test χ2

14 = 4.2, p = 0.12). Post hoc analysis revealed that the 
divergent field group was statistically significantly worse 
than the convergent field group for trial time (p = 0.004), 
translational path error (p = 0.001), and error-time (p = 0.02). 
For translational path error, the null field group averaged a 
baseline-adjusted -0.05 m2, the divergent field group 
averaged 0.18 m2, and the convergent field group averaged    
-0.20 m2. This pattern is to be expected, as the divergent field 
should make task completion more difficult by augmenting 
any errors present, and the convergent field should make task 
completion easier by minimizing any errors present. 

 
Figure 4.  (a) Calculation of translational path error. This metric can be 
visualized as the area of a surface that stretches between the desired and 
actual paths. It was calculated for each data point as the distance between 
!xn,actual  and !xn,desired  multiplied by the distance between !xn,desired  and !xn−1,desired . 

(b) Calculation of rotation path error. Instead of multiplying by distance 
between desired and actual points, we multiplied by the angle difference 
between the orientations of desired and actual points. 
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There was no statistically significant difference 
between the performance of the groups on any metrics at 
the end of the experiment. For trials 85-90, none of the 
groups performed statistically significantly differently from 
the other groups on any metric (KW test χ2

14 < 2.1, p > 0.36 
for all the metrics and all the comparisons). This implies that 
all of the training methods worked equally well, and training 
with a convergent or divergent field did not improve or 
worsen performance compared to training with the null field.  

Interestingly, the divergent field group performed 
better than the other two groups on translational path 
error at the start of the third session. During trials 61-66, 
there was a statistically significant effect of training group 
(χ2

14 = 7.5, p = 0.02) for translational path error. Post hoc 
analysis revealed that the divergent field group performed 
statistically significantly better than the null field group (p = 
0.02), with the null field group averaging a baseline-adjusted 
-0.03 m2, the divergent field group averaging -0.21 m2, and 
the convergent field group averaging -0.11 m2. This indicates 
that training in the divergent field caused a desirable 

aftereffect for translational path error. While the null and 
convergent field groups took several trials to remember how 
to do the task at the start of the third session, the divergent 
field group performed well from the beginning of the session. 

IV. CONCLUSIONS AND FUTURE WORK 

This study compared training in null, divergent, and 
convergent force/torque fields during a peg transfer task 
using a teleoperated RMIS system. Our results showed that 
there was no statistically significant difference between the 
three training methods, as the performance of all three groups 
of participants was almost identical at the end of the 
experiment.  

The sample size in our study is relatively small, and our 
study may be underpowered. Therefore, we may be missing 
some statistically significant differences.  Another reason 
why we did not see the hypothesized improvement in 
performance of the participants who trained in the divergent 
field might be that the task chosen for this experiment was 
relatively simple, and participants were able to reach a high 
level of proficiency during the first session, before the 
training began. Future work will test the effects of error 
augmentation and minimization on learning of more 
complicated surgical tasks. Additionally, there may be 
benefits to training in the divergent and convergent fields that 
were not uncovered by this study. For example, because the 
divergent field group participants practiced getting out of 
large-error situations during training, they may be able to 
recover better from unexpected perturbations. This 
hypothesis will be tested in our future studies. Future work 
can also examine the effect of teleoperation scaling factor on 
performance and learning. Finally, both training methods will 
need to be tested in a long-term retention protocol where 
performance benefits will be measured several days or weeks 
after the training. 

 

 
Figure 5.  Adaptation curves for all four metrics. Metrics were calculated for each trial for each participant and then averaged across all five participants in 
each group. Shaded background is the standard error for each group. Each participant’s baseline ability (average performance on trials 25-30) was subtracted 
from their data. 

TABLE I.  BASELINE ABILITIES IN TRIALS 25-30 (MEANS AND 
STANDARD ERRORS) THAT WERE SUBTRACTED FROM DATA. 

 Null Divergent Convergent 
Trial Time (s) 6.3 (±1.2) 6.6 (±0.9) 7.7 (±1.0) 

Trans. Path Error (m2) 0.52 (±0.08) 0.60 (±0.10) 0.60 (±0.04) 
Rot. Path Error (rad-m) 20 (±3) 21 (±3) 22 (±3) 

Error-Time (rad-m-s) 300 (±100) 330 (±80) 390 (±80) 
 

TABLE II.  IMPROVEMENTS FROM TRIALS 1-6 TO 25-30 AND 25-30 
TO 85-90 (P-VALUES ARE FROM THE WILCOXON RANK SUM TEST). 

 Trials 1-6 to 25-30 Trials 25-30 to 85-90 
Trial Time (s) 9.01 (p < 0.001) 1.46 (p < 0.001) 

Trans. Path Error (m2) 1.13 (p < 0.001) 0.19 (p < 0.001) 
Rot. Path Error (rad-m) 37.7 (p < 0.001) 3.8 (p = 0.005) 

Error-Time (rad-m-s) 2600 (p < 0.001) 140 (p < 0.001) 
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