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Abstract— Given the rise in surgeries performed with surgical
robots and associated robotics research efforts, tool tracking
methods have the potential to provide quantitative feedback
concerning surgical performance and establish absolute tool
tracking to help advance surgical robotics research. We have
created a platform-agnostic method for low-cost tracking of
surgical tool shafts in Cartesian space in near real time.
We employ a joint Hough Transform - Geometric Constraint
approach to locate the tool tips in the stereo camera channels
independently. Cartesian coordinates are registered using a
custom polynomial depth - disparity model.

The algorithm was developed using a low-cost experimen-
tal webcam setup and evaluated using a da Vinci surgical
endoscope. The algorithm was benchmarked for 3D tracking
accuracy and computational speed. The system can locate the
tool tip in 3D space with an average accuracy of 3.05 mm
at 25.86 frames per second using the webcam setup. For
the endoscope setup this algorithm has an average tracking
accuracy of 8.68 mm in 3D and 1.88 mm in 2D with an average
frame rate of 26.9 FPS. The algorithm also demonstrated
successful tracking of tools using captured video from a real
surgical procedure.

I. INTRODUCTION

The number of surgeries performed worldwide with the
da Vinci surgical robot (Intuitive Inc, Sunnyvale, CA) in
2005 was under 50,000. This number rose to over 350,000
by 2011 [1]. Robot-Assisted Minimally Invasive Surgery
(RMIS) has facilitated improvement in success rates and
patient experiences in surgical procedures. This new era
has spurred a departure from traditional Halstedian models,
wherein an apprentice learns by watching a master and de-
mands new training and evaluation methods in order to teach
and evaluate surgeons before granting access to patients.

Recent developments in training curricula require metrics
related to spatial and temporal data. Studies have shown that
such data can provide valuable information for discriminating
expert from novice surgeons [2]. Certain key motion metrics
can be used to differentiate surgical skill level, including;
path length, economy of motion, time, motion smoothness
and response orientation [3]. These motion metrics require a
fast and accurate tool tracking method. Furthermore, within
the field of medical training and simulation, cost is com-
monly a barrier to entry for new systems. With this in mind,
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the proposed tracking system was designed to be low-cost
and platform independent in order to increase the chance of
adoption.

A low-cost and accurate tool tracking algorithm is also
beneficial to research groups utilizing the RAVEN surgical
robotics platform. Currently this system utilizes kinematic
data in order to infer tool tip position [4]. For the develop-
ment of sophisticated controls algorithms or other human
interfaces where tool position is utilized, the kinematic
calculation of the tool tip may not be accurate enough. Such
instances reveal the need for absolute position tracking of
robotic tools.

A review of the literature indicated four main methods
for tracking laparoscopic and robotic tools. These meth-
ods include mechanical, electromagnetic, ultrasound, and
computer-vision techniques [5]. The mechanical, electromag-
netic and ultrasound systems are all ill-suited for robotic
applications due to prohibitive hardware issues (tool aug-
mentation and workspace constraints) as well as cost. The
joint kinematics from the da Vinci robot cannot be widely
used to track the tool tip position since this information is
not openly available to users. Even if this information were
available, kinematic calculations of the end effector position
suffer from compliance in the cabled joints and links as well
as compounded finite uncertainties in sensing.

Computer vision approaches for tracking surgical tools
have been developed both by commercial entities as well
as research institutions. Stryker Inc. (Kalamazoo, MI) and
Northern Digital Inc. (Ontario, Canada) both produce com-
mercial optical tracking systems. These systems utilize LED
beacons affixed to the surgical tool for tracking. However,
such systems are expensive and require hardware modifi-
cations. Research groups have attempted tracking methods
such as the use of color marker segmentation via pixel
thresholding [6], [7], [8] and color thresholding across the
whole image in order to extract the tool shaft [9], [10], [11].
While computationally efficient (15-17 Hz) these methods
suffer from color and lighting variation issues. Tool tracking
has been performed using geometric constraints in order
to identify the tool shaft [12], [13], [14]. Using a Hough
transform to identify the lines bordering the tool shaft, the
tool tip can then be found along the tool shaft using color
thresholding or physical measurements. The highest reported
frame rate using this method was 16 Hz with a 2D pixel
accuracy of 27.8 pixels [14]. Tool detection has also relied
on feature descriptor libraries [15], [16]. Using a physical
model of the tool tip, a library of descriptors corresponding
to the object can be compiled and used to detect the object.
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Fig. 1. The experimental webcam mount.

Such a method is computationally prohibitive for real time
tracking (1 FPS) [15].

Recently Richa et al. have had success using a model
image of a surgical tool in conjunction with a Sum of
Conditional Variance (SCV) metric for finding tools in retinal
surgery [17]. The relatively simple shape of retinal surgery
needles and smooth background of the field of view allows
the use of ‘model images’, however this would not be a
feasible approach given the complex end-effectors found on
surgical robots. This group also did not formulate absolute
3D tracking methods and instead utilized only relative pixel
disparities.

The literature has indicated a lack of a computer vision
solution which can accurately track tools in 3D space, in
near real time, which is immune to color changes, and with
indifference to tool type. The goal of this work was to
design a computer vision solution which can simultaneously
provide these requirements at a reasonable cost. The primary
contribution of this work is a tracking algorithm which is
computationally inexpensive and accurate relative to prior
art. An additional benefit is the use of low cost hardware
to increase the possibility of adoption in cost-constrained
medical simulation applications.

II. DESIGN

A. Hardware Design

Two distinct camera systems were utilized for the de-
velopment of this algorithm. The first camera unit is a
stereo camera mount comprised of two USB Lifecam Studio
cameras from Microsoft (Redmond, WA). These provide
frame rates of 30 FPS at standard resolutions with slight
drops at higher resolutions (up to 1080p). At the time
of purchase, each camera cost approximately $50 USD.
While webcams suffer from rolling shutter effects, their low-
cost availability permits widespread use of this work by
other researchers. Webcams allow for convenient algorithm
development as well as use in laparoscopic training modules
where endoscopes are prohibitively expensive.

A rapid prototype stereo camera mount was designed
using computer aided design (CAD) software (Fig. 1) (PTC
Creo, Lansing, MI). The camera axes are mounted parallel
without allowing rotation or translation in the camera hous-
ing. The mount can be 3D printed with standard machines.
The top and bottom of the mount are held together by
nylon set screws. The interocular distance for the webcam
stereo mount is 29.1 mm. The CAD files are available via
www.bit.ly/1npTAGr.

The second camera unit was a surgical endoscope from a
da Vinci S surgical system (Fig. 2). This endoscope provides

Fig. 2. The da Vinci camera unit and Endoscope.

high definition stereo images to the surgeon for 3D visualiza-
tion on the master console. The technical specifications for
the endoscope are not made available but were empirically
observed. The endoscope is capable of resolutions up to
1920x1080 and provides a framerate up to 100 FPS. This
setup is relatively similar to the experimental camera setup
except for a change in interocular separation. For the endo-
scope cameras the interocular separation was measured to be
5.1 mm.

For testing and calibration of the endoscope, a Digital
Video Interface (DVI) frame grabber was utilized. The frame
grabber chosen was the VC200xUSB dual channel DVI box
from Electronic Modular Solutions (Wigston, England). This
DVI frame grabber allows simultaneous capture from two
separate DVI sources.

For benchmarking purposes, a computer running Microsoft
Windows 7 was utilized. This PC used an Intel (Santa Clara,
CA) Core i7 processor running at 3.0 GHz with 32 GB of
RAM.

B. Software and Algorithm Design

The tracking algorithm was developed with the C++ ISO
11 programming language. Additional libraries included the
OpenCV library from Willow Garage (Menlo Park, CA) and
the Qt library from Digia (Helsinki, Finland).

The flow of information for 3-D tool tracking is function-
ally decomposed into 3 major steps: 2-D object detection,
depth extraction and Cartesian coordinate calculation. While
more sophisticated geometric computer vision models do
exist in the literature, the data-driven technique for disparity
to depth mapping allowed the authors to better understand the
mathematical model for the cameras as well as employ more
complex models for Cartesian registration. The required
input is a captured stereo video frame and the output is
Cartesian tool coordinates and time (Fig. 3). While the
serial flow of information has the downside of potential
errors compounding, the benefit is minimal computational
effort as a means to improve frame-rate. Computational
effort is decreased since the object recognition can occur
simultaneously in each channel and the Cartesian coordinate
calculation is reduced to a single linear equation as opposed
to a full stereo correspondence method.

A novel approach was identified in which the known
geometric constraints of the tool shaft could be exploited
using a Hough transform in order to identify lines in the
image. The algorithm follows eight high level steps outlined
in Algorithm 1. Once the edge gradients are computed using
the Sobel operator, the edges are selected using a dynamic
threshold. This threshold is set by computing the number
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Fig. 3. The 3-step approach for object tracking.

Data: Frame
Result: Cartesian Tool Location
Convert frame to grayscale;
Blur grayscale image;
Sobel edge detection;
Dynamic edge gradient threshold;
Probabilistic hough transform;
for Each line in PHT line array do

Extract unique line pair;
Compute line parameters;
if Parameters best match constraints then

Save line;
else

Extract 2 new lines;
end

end
Calculate endpoints closest to prior location;
Save tool tip location;

Algorithm 1: Detection of surgical tool tips

of edge pixels in the image. If the number of edge pixels
is too high (or low), dependent on resolution, the gradient
threshold value is then increased (or decreased).

In particular we utilized the probabilistic Hough transform
(PHT) designed by Matas et al. [18]. Using the imple-
mentation of this algorithm in OpenCV we are able to
achieve improved frame rates with the added benefit that
the endpoints of the detected lines are determined. Hough
transforms have been shown to have severe limitations in in-
vivo settings [12]. These limitations include lost lines due
to minor occlusions. However, the use of the PHT variation
limits the loss of lines due to occlusions along the shaft.

The line endpoint information is sorted according to
certain known geometric constraints in order to isolate the
lines corresponding to the borders of the tool shaft. The
particular geometric constraints utilized are unique to this
work and are the result of manual frame inspection (Table.
I).

Once the correct lines have been isolated, the endpoints of
the lines can be utilized to determine which end of the tool
shaft contains the tool wrist. For initialization purposes the
tool end closest to the center of the image is taken as the tool
wrist. After initialization, the endpoints closest to a previous
known location are taken to be the wrist. Using the two
‘wrist’ endpoints, the midpoint of these endpoints is taken as
the pixel location of the wrist. In the case of multiple surgical

Constraint Condition

Lines along the tool shaft are
parallel ∆θ < θthreshold

Endpoints of the lines should be
near to each other.

d(p(i)1,1, p(i)2,1)<
dthreshold

Length of two lines should be
longer than any other set of

parallel lines

d(p(i)1,1, p(i)1,2)>
lengthmax

The resultant endpoints should be
‘near’ the last known location.

d(p(i)1,1, p(i−1)1,1)<
dnear

TABLE I. Geometric constraints and their implementation
in code. d() represents the euclidean distance formula and
p(k)m,n represents a point (x,y) within frame k, line m, index
n

Fig. 4. The four end points of the tool shaft lines are circled.

Fig. 5. The tool is localized in separate channels and then
the disparity is computed.

tools in the field of the view, the line endpoint information is
sorted according to the previously stated known constraints
but then separated according to prior spatial information as
well as the angle of the tool shaft.

The depth extraction relies on the pixel location of the tool
tip detected independently in both stereo channels. Using the
right and left pixel location of the tool tips, the disparity
can be calculated (Fig. 5). This method of single tool tip
disparity calculation requires a simpler calculation than a
full stereo correspondence. The tool tip disparity is computed
using the Euclidan distance formula. Disparity is then used to
determine the depth to the tool tip and Cartesian coordinates.

The formula used to calculate depth from disparity de-
pends greatly on the camera setup and model selected. Sev-
eral models exist for computing depth. The most ubiquitous
of these models is the standard linear transformation outlined
in the works of Zhang [19] and Tsai [20]. This method did
not result in a sufficiently accurate model for the endoscope
optics [21]. The depth model utilized is determined using
a planar calibration board and data correlating depth with
disparity. The calibration data was used to heuristically
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devise a model with the best fit. This empirically determined
model allows the use of non-standard camera optics with
minimal drop in accuracy.

The final step in the tracking algorithm is the correlation
between pixel space coordinates of the tool tip and real
world coordinates. The Zw Cartesian coordinate, determined
from the depth extraction method, is used to compute the
remaining coordinates, (Xw,Yw). This Cartesian Zw model
(depth) is a linear combination of disparity, x and y pixel
location for the webcam setup (Eq. 1). The Cartesian Z
model for the endoscope is a third order polynomial in order
to offset disparities (Eq. 2). The offset disparity (dispo) is
then used in an exponential function to compute depth (Eq.
3).

Zw = a1(dispa2)+a3xp +a4yp +a5 (1)

dispo =
[
b0 ... bn

]
∗[

1 x y x2 xy y2 x3 x2y xy2 y3
]T (2)

Zw = c0ec1(disp−dispo) (3)

The equation coefficients (ai,bi,ci) for this model are
empirically determined using a linear regression fit. Separate
calibrations are required for the experimental camera setup
and the da Vinci Endoscope. This method of Cartesian
registration resulted in a simple model with adequate per-
formance.

III. EXPERIMENTAL DESIGN

A series of benchmarking experiments were developed in
order to analyze the computational speed of the algorithm,
the 2D and 3D tracking accuracy, and the tracking noise for
a stationary tool. ‘Robustness’ was also evaluated based on
what conditions result in successfully located tools.

The endoscopic camera was evaluated using a recorded
video of a prostate removal procedure. Each metric is eval-
uated for the experimental webcam setup as well as the
endoscope camera.

In order to determine the latency (tracking frame rate),
we calculate the time each tracking component takes to com-
plete. The time for each component to complete is computed
through the use of timestamps taken at the beginning and end
of each component during its thread execution. This occurs
at the moment it receives data and returns data, respectively.

The time the second component (2D object detection)
takes to complete (Tdetect,right ,Tdetect,le f t ) is computed as the
difference in time between when a new right or left frame
is received from the capture thread and when the 2-D pixel
location of all tool tips has been found. Since each channel’s
2D object detection is performed simultaneously, we adopt
the worst case scenario and consider the time difference to
be equal to the larger of the two channels time difference.
The time 3D localization requires (T3DLocate) is computed as
the difference in time from when the pixel location from the

Fig. 6. Known trajectory board below stereo camera and
model with numbered arcs.

object detection threads is acquired and when the Cartesian
coordinates have been calculated.

Ttracking(ms) = Max(Tdetect,right ,Tdetect,le f t)+T3DLocate (4)

The second metric to be characterized is the accuracy
with which the tracking algorithm can locate the tool tip in
3D Cartesian coordinates. Tracking accuracy is determined
by moving the tool tip around a known fixed trajectory.
Using the pixel coordinates and disparity found as the tool
tip is moved around this trajectory, the world (Xw,Yw,Zw)
coordinates are calculated. The reprojected world coordinates
are then compared with the coordinates of the known trajec-
tory in order to determine the error for each location. The
reference trajectory was modeled in Matlab as analytically
synthesized, finitely-spaced points.

In order to have a repeatable trajectory with known coor-
dinates, a board was developed using CAD software. This
trajectory board contains 3 circumscribed paths located on
the same horizontal plane (Fig. 6). Each path is recessed
into the board so that the tool tip can rest in the groove and
repeatably follow the track. Since the board was designed
in CAD and then 3D printed, the geometry of the board is
accurately known to within the tolerance of the 3D printer.
For this board, a Stratasys Dimension 1200es 3D printer was
used (Stratasys, Minneapolis, MN). This printer is capable
of resolutions up to 0.254 mm.

The third metric characterized is the overall noise of
the tool reprojection. Noise is evaluated by calculating the
deviation of a stationary tool tip over time. In order to
calculate this metric accurately, the surgical tool is fixed
in a clamp with the tool tip in the visible field. The tool
tracking algorithm is then run and logs tool position. After
the tool tracking is finished, the data is exported for analysis.
Using the position data, an average location (Xavg,Yavg,Zavg)
is calculated.

Using the calculated average position, the deviation of
each reprojected data point from the average is computed.
After all errors have been calculated, an average deviation is
determined. This average deviation is considered the noise of
the tool tracking algorithm. For any given stationary noise of
the tool tracking algorithm, it is not theoretically possible to
attain a more accurate overall tracking accuracy. The noise
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Fig. 7. Tool tracking in 3D using the known trajectory board.
3D position is displayed on the right.

from this algorithm is primarily due to the two stereo object
detection channels.

IV. RESULTS

For the webcam camera setup, the algorithm takes an
average of 39.9 ms for each frame to be analyzed and the
tool position calculated. This results in a working framerate
of 25.86 FPS. The camera capture rate is 30 FPS.

In terms of accuracy in tool tip localization, the stationary
noise level (1.293 mm) is rather large. Despite this noise level
the average tracking error is very low (3.05 mm) considering
this is less than the diameter of the tool shaft. The tracking
errors are reported for target depths between 200 and 400
mm. The 95th percentile of tool reprojections are within
5.474 mm of the known location. The percentage of time
where the surgical tool is located within 8 mm of the known
trajectory is 99.4%.

Performance Metric Webcam Endoscope

Computation Time (ms) 39.9 33.99
Frame Rate (FPS) 25.86 26.98

Depth Reprojection Error (mm) 4.09 7.89

Localization Noise (Total) (mm) 1.29 7.92

Average 3D Error (mm) 3.05 8.68

Average 2D Error (mm) 1.59 1.88

95th Percentile Error (mm) 5.47 15.06

Percent Within 8 mm 99.4 % 55.22 %

TABLE II. Performance metrics for the webcam setup and
the endoscope setup.

For the endoscope camera setup, the average frame rate
was found to be 26.98 FPS. It terms of tracking noise, the
endoscope setup suffers from substantial noise in the depth
extraction model. For a stationary tool, the tracking algorithm
returns an average noise of 7.92 mm in tool reprojection.

It terms of tracking accuracy, the overall reprojection error
when compared with the known trajectory was found to be
8.68 mm, while this is still less than the diameter of the
tool shaft, the performance is inferior to that of the webcam.
Similarly, the amount of reprojections within 8 mm of the
known trajectory was found to be 55.2 %. This tracking
accuracy is significantly lower than the experimental webcam

Fig. 8. Tool tracking configurations using the webcam setup
(Left Channel).

Fig. 9. Tool tracking using a real surgical video (endoscope).

setup. However, it is important to note that the average 2D
reprojection errors for the endoscope setup in the Xw and Yw
components were only 0.35 mm and 1.25 mm, respectively.

As indicated in Figure 8 the presence of background
objects and poor lighting does not negatively affect the
tool detection algorithm using the webcam setup. For the
endoscope setup using surgical video (prostate removal),
both tool tips were correctly located 51.2 % of the time
(54 second video clip) (Fig. 9). Similarly, at least one tool
tip was correctly located 88.0 % of the time. While neither
tool tip was correctly located 12.0 % of the time, this error is
primarily due to tools leaving the field of view and occlusions
from electrocautery smoke. The radial distortion within the
endoscope also led to localization errors not found in the
webcam setup.

V. CONCLUSION AND FUTURE WORK

The surgical tool tracking algorithm presented in this
work provides promising results in terms of accuracy and
primarily in term of speed. For the webcam setup, the
tool tracking algorithm met all initial design criteria. The
99.4% successful tool localizations exceeds the previously
reported accuracies. Reiter et al. using a manual frame-
by-frame analysis, reported a 93 % accuracy over 1600
test frames [15]. That accuracy was reported in 2D pixel
space and also functions at a much slower frame rate (1.2
secs/frame). While the experimental setup in the referenced
work differs with our work, the reported accuracy provides
a baseline for comparison. The working frame rate of 25.86
FPS exceeds the 16 Hz found in prior art [6], [8], [14].

The tool tracking algorithm is agnostic to end-effector type
since only the shaft is detected. Therefore any tool tip can
be tracked as long as the shaft is consistent. The algorithm
also performs well in varied lighting conditions since it does
not depend on color. For the endoscopic camera setup, the
working frame rate of 26.98 FPS exceeds prior art. The
average 2D reprojection errors in the Xw and Yw components
were very good (0.35 mm and 1.25 mm), indicating that the
depth extraction model is responsible for most of the error.
This is a result of the constrained disparity variation inherent

1988



in a stereo camera with such a narrow interocular separation
as well as the uncertainties in camera optics. The range of
disparities found in this camera setup was found to be about
10 pixels for a depth range of 200 mm. This results in a high
signal to noise ratio.

The primary contribution of this work is the near real time
performance. Prior art has not been able to achieve frame
rates approaching 30 hz. Our performance enables several
applications of tool tracking where real time location updates
are necessary. The 2D accuracy is another contribution to the
field. The endoscope and webcam camera setups achieved
2D accuracies around 1 mm which has not been previously
reported. Prior art has focused on 2D object detection and
only relative position information. As such the 3D tracking
characterization and absolute Cartesian registration are both
unique contributions to the art.

Future work will incorporate the use geometric computer
vision methods for 3D coordinate extraction. The use of
feature detectors will also be employed in conjunction with
epipolar geometry to constrain the search space in the sec-
ond stereo channel. Other work will include the immediate
extension of this tracking algorithm to laparoscopic tools and
incorporation into real surgical applications for experimental
analysis. Finally we intend to make our work (software and
CAD models) available for research purposes to both clinical
and engineering researchers (www.bit.ly/1npSXwv).

VI. LIMITATIONS

The tool tracking algorithm is not capable of tracking
or detecting the configuration of the tool wrist. However,
this problem has already been partially resolved by White
et al. who developed a mechanism for extracting wrist
configuration information from surgical robotic tools [22].
A synthesis of the current tool tracking scheme with an end-
effector configuration tool may be explored. The authors do
acknowledge that this algorithm will lose the tool position
should the end-effector or end of the tool shaft become
occluded. These occlusions can include smoke, blood, other
tools, and movement outside the field of view.
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