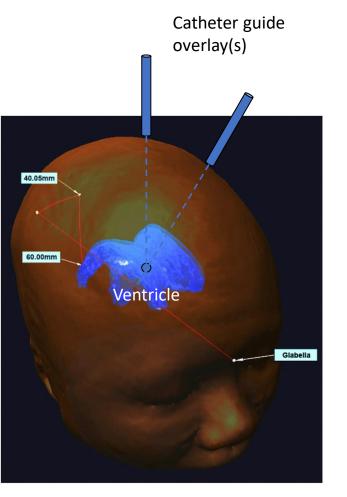


HMD-Based Navigation for Ventriculostomy - Checkpoint -

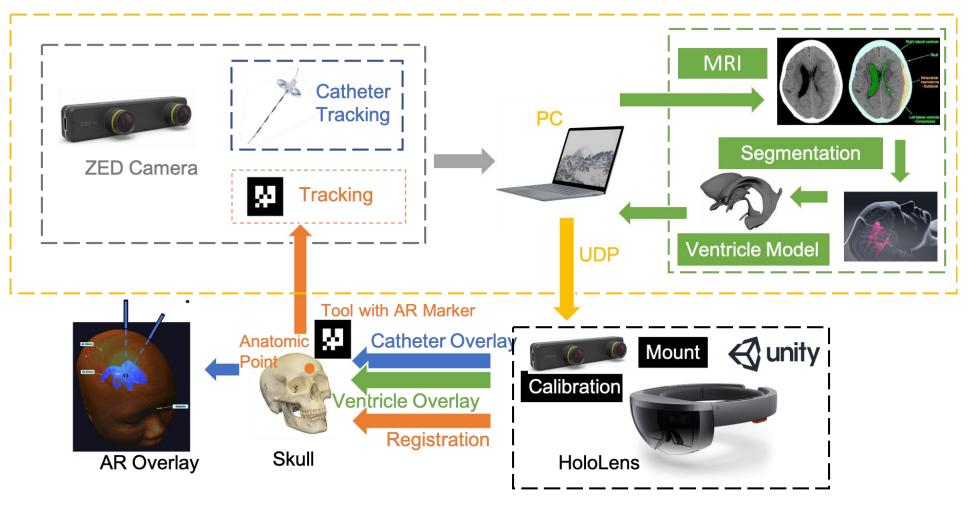
Group 15: Mingyi Zheng Yiwei Jiang Mentor:

Ehsan Azimi

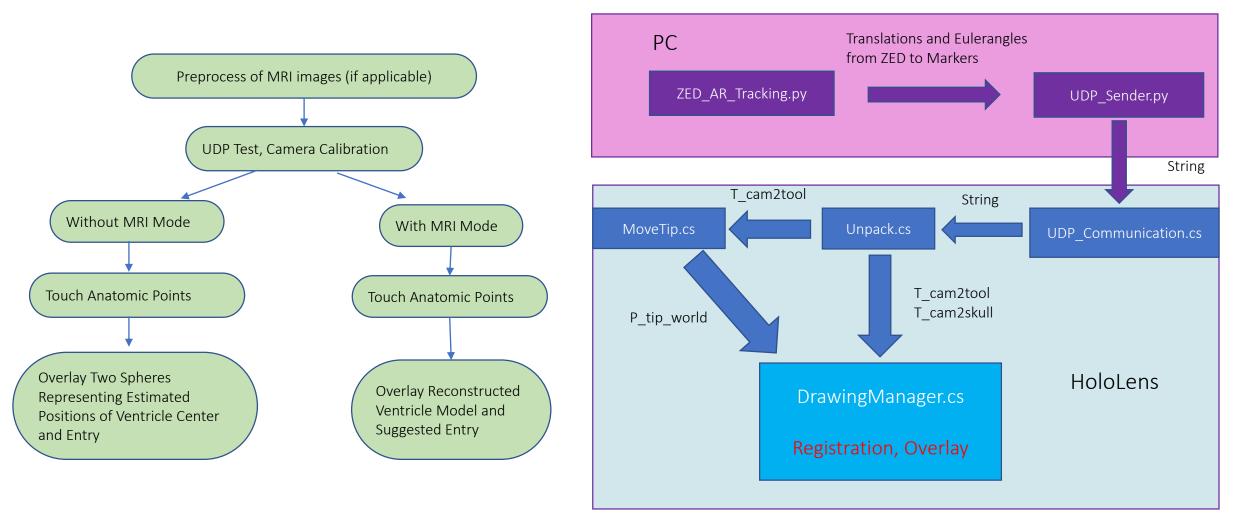

Prof. Peter Kazanzides

Project Goal

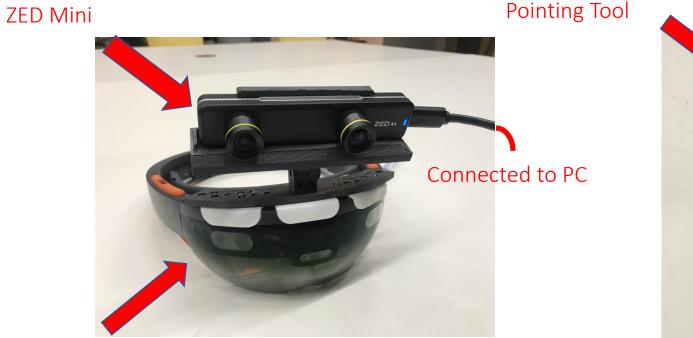
- The goal is to introduce image guidance via augmented reality on HoloLens
- The image guidance is AR overlay of ventricle model from MRI image and catheter guide overlay.

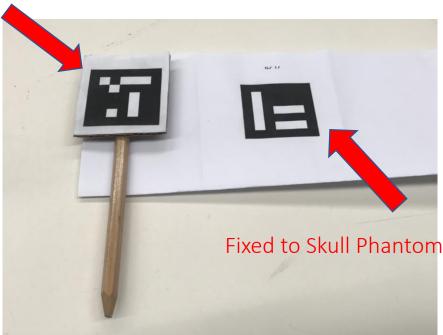


Azimi, E., et al.: Can mixed-reality improve the training of medical procedures? In: IEEE Engineering in Medicine and Biology Conference (EMBC), pp. 112–116, July 2018

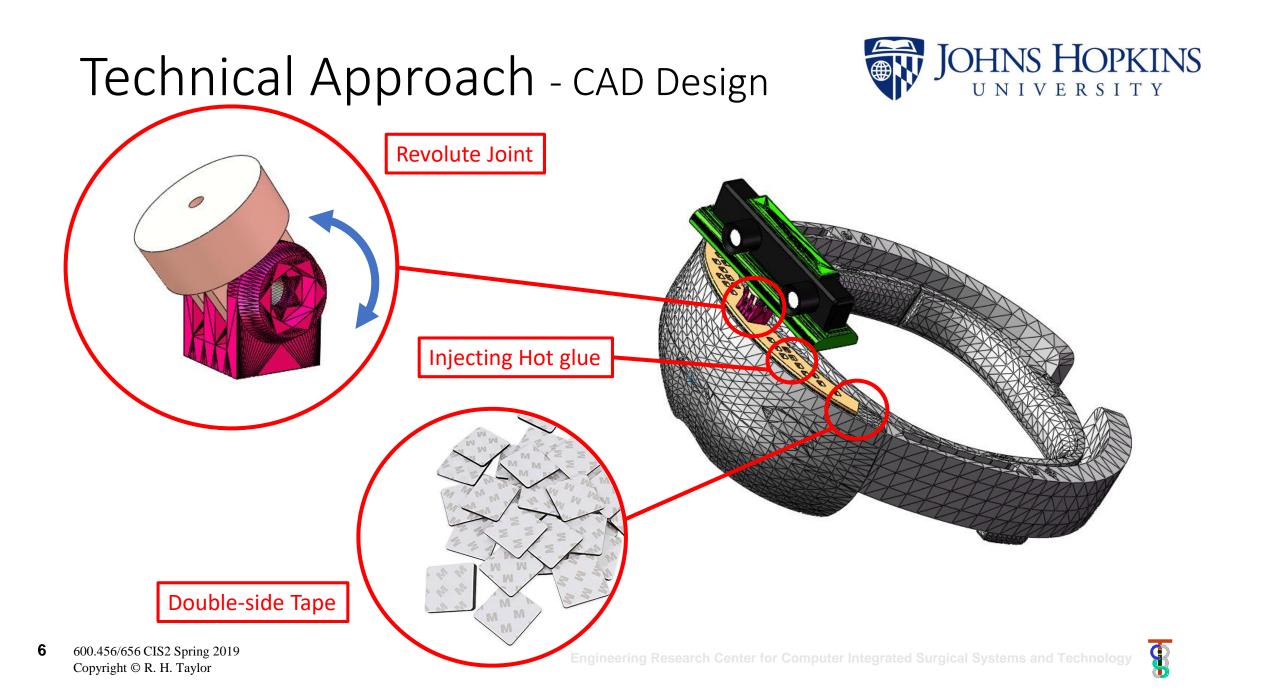


Workflow and Software Design

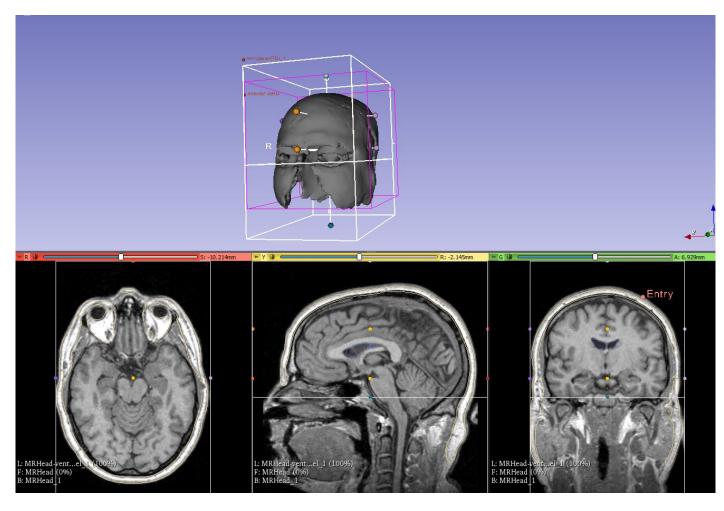



4 600.456/656 CIS2 Spring 2019 Copyright © R. H. Taylor

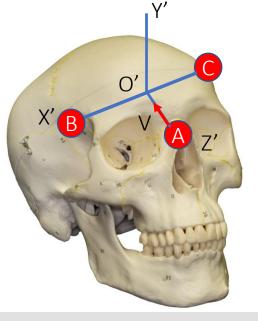
Technical Approach - Setup

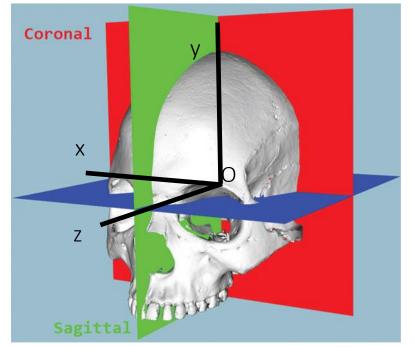


HoloLens



Technical Approach -Segmentation


- Ventricle and Skull segmentation in 3D slicer
 - Thresholding
 - Select target object
 - Close holes
 - Smooth and mesh
- Manually select anatomic point and entry point to get relative position


Technical Approach - Registration

Vector3 V = B + Vector3.Project(A - B, C - B) - A; Vector3 H = Vector3.Project(B - A, V); Vector3 0 = A + H; Vector3 x0 = Vector3.Normalize(A - 0); Vector3 y0 = Vector3.Cross(C - 0, A - 0).normalized; Vector3 z0 = Vector3.Normalize(C - 0);

CraMs: Craniometric Analysis Application Using 3D Skull Models

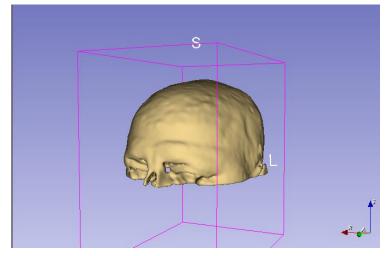
Technical Approach - Overlay

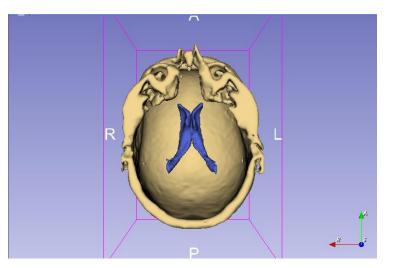
Without MRI Mode

- Overlay a 5cm sphere on the origin of the constructed frame;
- Cast a ray from the origin, At a 45 degree angle to the x'o'y' plane.

With MRI Mode

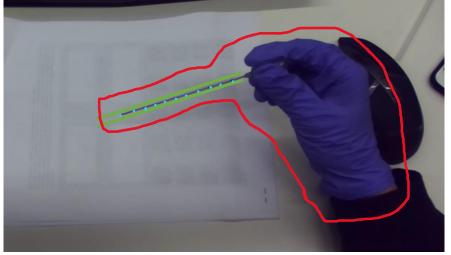
- Overlay a 3D ventricle model on T_ventricleCenter_anatomical(x,y,z,R,P,Y) obtained from MRI;
- Also overlay a 3cm sphere on P_entry_anatomical(x,y,z);
- Cast a line from the center of ventricle to entry.

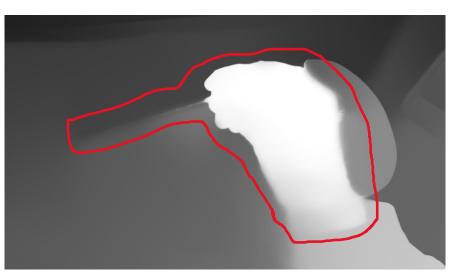

9 600.456/656 CIS2 Spring Copyright © R. H. Taylor



Technical Approach - Test

- 3D print top half part of segmented head
- Print 2 parts, skull and ventricle
- Skull
 - A hole for entry point for catheter insertion
- Ventricle
 - A base with a post to connect ventricle
- Test
 - User wear HoloLens to perform catheter insertion on the 3D-printed model 10 times, record the number of time that hit ventricle to evaluate success rate





Technical Approach -Catheter

- 1. RGB image to locate hand position as seed points with purple gloves
- 2. Mask the region around seed point with similar depth
- 3. Hough Transformation to find the catheter
- 4. Thresholding to get tip and scale lines
- 5. Calculate tip position and angle of catheter

Deliverables

Minimum

- Documentation and Code for Navigation System 1.0 includes:
 - Anatomic points registration by AR Marker Anatomic points registration by tool with AR Marker in Zed mini camera
 - AR overlay system indicating ventricle centroid and catheter guidance based on anatomic points
 - Report of accuracy test Video to demonstrate
- Video demo for the workflow with Navigation System 1.0

Expected

- Documentation and code for Navigation System 2.0 includes:
 - User interface with workflow instruction and voice command
 - Camera system integrated to HoloLens
 - Semi-automatic Ventricle segmentation program on 3D slicer
 - Report of accuracy test-Camera mount design
- Video demo for the workflow with Navigation System 2.0

Maximum

- Documentation and Code for Navigation System 3.0 includes:
 - fully-automatic ventricle segmentation program
 - Catheter tracking system with guidance of insertion error and insertion depth
- 3D-printed skull with ventricle for performance test
- Report of performance test
- Video demo for the workflow with Navigation System 3.0
- **12** 600.456/656 CIS2 Spring 2019 Copyright © R. H. Taylor

Dependencies

Dependency	Solution	Status
Access to SMARTS Lab	Need Prof. Kazanzides sign the form	Resolved
Software: Unity, ZED SDK, 3D Slicer, SOLIDWORKS, OpenCV	Download from official websites	Resolved
Microsoft HoloLens	Ehsan will share his HoloLens with us	Resolved
ZED Camera	Order from Internet	Resolved
ArUco Markers	Generate online and Print	Resolved
MRI Images	Get from Internet	Resolved
Prior Work Code	Get from Ehsan and Long	Resolved
3D Printer	Contact Long, use LCSR 3D Printer	Resolved
-Skull Model	Get from SMARTS Lab	Due Mar. 12
Catheter	Use one in SMARTS Lab	Resolved

	Feb.19	Feb.26	Mar.5	Mar.12	Mar.19	Mar.26	Apr. 2	Apr. 9	Apr.16	Apr.23	Apr.30	May.7
Get familiar with Unity, ARToolKit												
finger Tracking-ZED AR Tracking												
Depoly Application to HoloLens												
Navigation system 1.0 without MRI												
Global camera setup-Zed mini Camera Mount Design												
Evaluate Accuracy Zed mini Camera Calibration												
Skull and Ventricle segmentation with anatomic points												
Navigation system 2.0 without MRI												
Navigation system 3.0 with Catheter Tracking												
Documentation												
Evaluation of performance with skull phantom												
Final Presentation and Report												

14 600.456/656 CIS2 Spring 2019 Copyright © R. H. Taylor

Setbacks and Difficulties Solutions

- 1. Problem with deployment
- 2. ZED SDK, CUDA installation
- 3. Unity Version
- 4. Hardware
- 5. Accuracy
- 6. Latency

CUDA 10.0 installation kills Windows 10

I am trying to install CUDA 10.0 on a fresh HP Omen lapto but once I reboot it would never load Windows, goes to rec and restoring OEM setup. Repeated second time, same re Please advice. Thank you.

Posted 01/01/2019 06:05 PM

Er	ror List		
E	Entire S	olution	I Error I Warning O Messages Build + IntelliSense
		Code	Description
	8		DEP0100 : Please ensure that target device has developer mode enabled. Could not obtain a developer license due to error 800704C7.
	A		The certificate specified has expired. For more information about renewing certificates, see http://go.microsoft.com/fwlink/?LinklD=241478.

Milestones

Milestones	Date				
Segmentation and 3D reconstruction of Skull and Ventricle	3/5 🗸				
Deploy Application to HoloLens	3/23 🗸				
Navigation System Without-MRI Mode	4/5 V Implemented, but				
Navigation System With-MRI Mode	4/10 v needed to be optimized				
ZED Camera Calibration	4/13 🖌 Need Tuning				
Catheter Tracking	5/3				
Evaluation of Performance with Skull Phantom	5/6				
Final Report and Poster	5/9				

Management Plan

	Member Responsibility					
Mingyi	 Segmentation and Reconstruction Camera Mount Design, Skull Phantom Design Catheter Tracking Accuracy Evaluation 					
Yiwei	 AR Tracking Unity Implementation, AR Overlay Registration Camera Setup, Communication, Calibration Accuracy Evaluation 					

- Weekly Meetings with mentors
 > Wednesdays 3 pm
- Team Meeting
 ➤ Twice a week (Monday and Friday)
- Code
 > GitHub repository
- Documentation, Data and Reports
 > JH Box
 - Course Wiki page

Reading List

- 1. Azimi, E., Doswell, J., Kazanzides, P.: Augmented reality goggles with an inte- grated tracking system for navigation in neurosurgery. In: Virtual Reality Short Papers and Posters (VRW), pp. 123–124. IEEE (2012)
- 2. Azimi, E., et al.: Can mixed-reality improve the training of medical procedures? In: IEEE Engineering in Medicine and Biology Conference (EMBC), pp. 112–116, July 2018
- 3. Sadda, P., Azimi, E., Jallo, G., Doswell, J., Kazanzides, P.: Surgical navigation with a head-mounted tracking system and display. Stud. Health Technol. Inform. 184, 363–369 (2012)
- 4. Chen, L., Day, T., Tang, W., John, N.W.: Recent developments and future chal- lenges in medical mixed reality. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 123–135 (2017)
- 5. Qian, L., Azimi, E., Kazanzides, P., Navab, N.: Comprehensive tracker based dis- play calibration for holographic optical see-through head-mounted display. arXiv preprint arXiv:1703.05834 (2017)
- 6. Saucer, F., Khamene, A., Bascle, B., Rubino, G.J.: A head-mounted display system for augmented reality image guidance: towards clinical evaluation for imri-guided nuerosurgery. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 707–716. Springer, Heidelberg (2001).
- 7. Azimi, Ehsan, et al.: Interactive Training and Operation Ecosystem for Surgical Tasks in Mixed Reality. OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. Springer, Cham, 20-29.(2018).

Thank You!

Any Questions?

