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1 Introduction

1.1 Background

Standard X-ray imaging brings difficulty for surgeons to identify region of
interest (ROI) features from anatomical clutter. [4] Dual energy X-ray en-
ables anatomical clutter reduction via material decomposition by utilizing
the physical properties of X-ray formulations. Fig. 1 illustrates the decom-
position process. Traditional Dual Energy X-ray Absorptiometry (DEXA)
system has been developed in analyzing bone density, fat tissue, etc. But
the model is largely approximated and simplified, because the target ROI is
usually large and not targeted to small region accuracy. In the application

Figure 1: Illustration of material decomposition. (a) 3D objects layout. (b)
2D object clutter. (c) Desired object decomposition.

of femoroplasty operation, surgeons need to rely on X-ray images to identify
the injected cement structure. 3D reconstructed femur cement using is fuzzy
using cluttered X-rays. A better 2D X-ray decomposition result will help
monitor the shape of reconstructed cement during injection. Thus, we pro-
pose to re-design the algorithm and improve the accuracy on decomposition
of injected cement during femoroplasty. Decomposed frames can be used to
improve 3D reconstruction of the injected cement, to better understand the
cement distribution.
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1.2 Problem

According to Beer-Lambert law, the measurement of X-ray detector can be
computed as I = I0e−µ(E)T , where I0 represents the intensity of x-ray pho-
tons before entering the materials, E describes the photon energy, and µ(E)
and T represent the attenuation coefficient and the path length. After ap-
plying the minus logarithmic operation, the projection m can be expressed
as m = −log( I

I0
) = µ(E)T . Considering multiple materials i = 1...M , the

attenuation integral will then be expressed as
∑M

i=1 µi(E)Ti. In reality, the
photon emission is following a spectrum distribution p0(E), and the attenu-
ation coefficient is dependent on energy E and material density ρ. Thus, we
can formulate the above factors in the following expression,

m(u) =

∫
p0(E)

(∑
k∈M

δ(k,M(x))(µ/ρ)m(E)

∫
ρ(x)dlu

)
dE (1)

,wherem(u) is the pixel-wise measurement of the X-ray detector and δ(k,M(x))
is the material identification function in 3D. According to the dependency of
energy, Eq. (1) can be further simplified as

wME =

∫
p0(E)

(∑
k∈M

δ(k,M(x))(µ/ρ)m(E)
)
dE

and

T (u) =

∫
ρ(x)dlu

Thus, we can formulate a linear model of the dual energy measurementm(u)L
and m(u)H as {

m(u)L = w1
LT

1(u) + w2
LT

2(u)
m(u)H = w1

HT
1(u) + w2

HT
2(u)

(2)

,where T 1(u) and T 2(u) are the desired pixel-wise decomposition unknowns
of two materials. The problem of dual energy X-ray decomposition is to
design a model to estimate the unknown T i(u), {i = 1, ...,M} from the mea-
surements {m(u)L,m(u)H}.

1.3 Related work

Parameters in (2) are calculated based on simulation of spectrum and online
published resource of material attenuation. Siemens company has on online
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spectrum simulation software https://www.oem-products.siemens-healthineers.
com/x-ray-spectra-simulation, where the stop energy of the emitted pho-
ton and material of the X-ray machine emission node can be entered as pa-
rameters to generate the spectrum. The material attenuation coefficients are
referred to the NDI published resource https://www.nde-ed.org/EducationResources/
CommunityCollege/Radiography/Physics/attenuationCoef.htm. In our
problem, we specifically use bone and iodine, because the injected cement
contains iodine element. Thus, wME in (2) can be interpolated between the
acquired spectrum and attenuation coefficient.

Based on the model we presented, the naive solution is solving a least
square problem for each pixel u:

minT (u)
(
M(u)−WT (u)

)T (
M(u)−WT (u)

)
(3)

, where

M =

[
m(u)L
m(u)H

]
, T =

[
T 1(u)
T 2(u)

]
,W =

[
w1
L w2

L

w1
H w2

H

]
.

The problem of least square solution is overfitting to particular training data.
Because the coefficient matrix W is acquired based on modeling, the artifacts
will bias the result T to unreasonable solutions, like negative numbers. Thus,
we add an non-negative constraint to the least square objective,

minT (u)
(
M(u)−WT (u)

)T (
M(u)−WT (u)

)
s.t. T (u) ≥ 0 (4)

This constrained least square solution is considered as model-based solution
for baseline comparison. We then introduce deep learning to combine with
the model-based solution to improve the result.

In a recent study of computed tomography (CT) reconstruction [1], the
author presented a novel method to combine model-driven approach and
data driven approach for solving ill-posed inverse problems. It gave state-
of-the-art results on computed tomography problem for both analytical and
human phantoms. The innovation is introducing deep learning to replace the
proximal operator in the traditional PDHG algorithm by a network [2]. This
design is then called Learned PDHG algorithm. Fig. 2 displays the details
of this learned PDHG algorithm. The operator Γθ and Λθ are called learned
proximal, which simply notes the learning part. This idea is inspirational to
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our material decomposition pipeline. We can also bring this insight to our
design by learning the updates of the variables in primal/dual domain using
a convolutional network.

Figure 2: Learned Primal-Dual Algorithm.

Figure 3: DeepDRR Pipeline [5]

2 Methodology

2.1 Simulation

In order to conduct simulation study, we want to use the recently proposed
X-ray simulation framework DeepDRR, which can perform fast and realistic
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simulation of fluoroscopy and digital radiography from CT scans by using
deep learning [5]. Fig. 3 is the pipeline of DeepDRR. We can also simulate
X-ray projections with different energy levels. Another benefit by introduc-
ing DeepDRR is that it enables segmentation in 3D domain, including bone,
soft tissue and air, which can be used to generate target decomposition pro-
jections as groundtruth images for training.

The CT image is acquire from ex vivo femurs during our lab cadaver
study. We only use the left femur for simulation. We also simulate 3D
cement model and manually place the cement in the femur head to do DRR
projection. Fig. 4 shows the DRR simulation effect.

Figure 4: DRR simulation effect.

2.2 Architecture

We formulate the problem as the following optimization objective, where
the first term is the regular least square model, which represents the physi-
cal solution; L(T (u)) models the non-negative physical constraint of decom-
position result; LN(T ) is the learned regularization, which contains spatial
information.

minT (u)
(
M(u)−WT (u)

)T (
M(u)−WT (u)

)
+ L(T (u)) + LN(T ) (5)

We then put the above objectives into a single deep network to perform
optimization concurrently. Fig. 5 presents the proposed architecture. The
original input is X-ray acquisitions “Low” and “High”. The Generator is a
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Figure 5: Proposed pipeline of training material decomposition.

U-net [3] based autoencoder, predicting the update of input images. The
Discriminator are basically two convolutional layers and two Fully connected
layers. Because of the memory limitation, we resize the original image to
be 256 × 256 resolution. The output of Generator is the update images,
noted G(low) and G(high). They are then passed through the physics model
to convert it into decomposition domain. The ReLU activation is then con-
nected as non-negative constraint. Now, we get the predicted decompositions
{T 1, T 2}. They and their paired groundtruth images are both sent to Dis-
criminator. The loss of Discriminator is calculated as LD = Lreal + Lfake
for each paired input. In order to drive the Generator prediction closer to
groundtruth, we add another consistency loss Lc, which is mean squared er-
ror of prediction and groundtruth for generator. Thus, the generator loss is
composed of LG = LC + (1− Lfake).
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3 Experiment

3.1 Data acquisition and simulation

We conducted cadaver study of femur cement injection using the nView sys-
tem. It provides low-dose X-ray projections and fast 3D reconstruction,
which can later be used for validation purpose. The stop energies are set
as 60 kV and 75 kV. For each single acquisition, the nView system auto-
matically acquires 125 projections equally distributed along its base round
emitter track. Because of the time sensitivity of the injection process, we
acquired dual energy projections twice during and after the injection.
Fig. 6 shows our experiment setup. We use the same system parameters to

Figure 6: Experiment setup of femur cement injection using the nView sys-
tem.

simulate the X-ray spectrum using the Siemens software as mentioned before.
It uses tungsten anode and 3 mm aluminum plus 0.5 mm copper filtration.
The stop energies are the same 60 kV and 75 kV. Fig. 7 shows the parameter
simulation result. From the figures, we clearly observe the K-edge effect of
the iodine element, which is helpful for differentiate the injected cement.
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Figure 7: Simulated spectrum and material attenuation coefficients.

3.2 Pipeline training

We simulated in total 2,000 training images and split 1,800 for training and
200 for validation. The simulated X-rays have 976 × 976 pixels with an
isotropic pixel size of (0.31mm)2. Source-to-detector distance was fixed to
800 mm while source-to-isocenter distance was 650 mm. Source rotation in
LAO/RAO was ∈ [0◦, 360◦] and in CRAN/CUAD ∈ [75◦, 105◦]. Images are
resized to 256×256. Learning rate was set to 0.0001. Batchsize was set to 1.
The Generator and Discriminator were updated once per iteration. Training
period ran for 100 epochs.

4 Results

We first tested the results on the synthetic validation dataset. The accuracy
is reported as mean dice score compared with the groundtruth decomposition
and the signal variation. Since the predictions all have background noise, we
are using a threshold of 1.2 times mean response to filter the noise. Then we
compared the iodine prediction mask with the groundtruth mask. The mean
dice score for model based method is 0.268, while our learning based method
reaches 0.791. We also calculated the mean standard deviation of the output
iodine response. The model based method has mean STD of 0.0037, while
our learning based method is 0.0028. So the learning based method is largely
outperforming model based method in prediction accuracy and smoothness
of response.
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Figure 8: Decomposition results of cement. Upper row: synthetic data; lower
row: real data.

We then tested the model on the unseen real X-rays. The constrained least
squared solution has very sparse and limited signals, which are mostly be-
cause of the overfitting of the linear model. Our learning-based model yields
much better result in the cement region. Fig. 8 presents the synthetic valida-
tion result and the real X-ray cement decomposition result. We can clearly
see that the model based version has stronger noise and bad background
prediction in the bone region, while the learning based method has more
smooth signals and flatten background, which is closer to the real solution.
The real X-ray decomposition also shows the shape of the injection tunnel
and the strong distribution at the center of the head, which corresponds the
real experiment condition.

5 Discussion

The success of our proposed learning based method over traditional model
based method is because 1) DeepDRR simulation is close to the real X-ray
effect. It includes the physics factors like photon spectrum, scattering, ma-
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terial segmentation, noise generation etc. into consideration, which performs
better than conventional DRR simulation environment. With the simulated
poisson photon noise and electric noise, it is close to the real X-ray noise dis-
tribution, which drives the network to update in the correct direction. 2) We
explicitly include the physical model and constraints into our pipeline design
and predict exactly the update residual term of the input projections, which
largely regulates the network to focus on the critical part of the problem. It
will then compensate the non-ideal model simulation and updates the input
projections, rather than overfit to the specific training data features. This
helps to increase the generalization ability of the model against traditional
model based method. 3) The GAN based architecture also improves the gen-
erator ability during the adversial iteration. The consistency loss also helps
to drive the generator along the correct track, instead of easily converging to
a bad local minimum.

Because of time constraint, we didn’t investigate much into a more com-
plex physical model. Currently, our baseline model is an approximated linear
combination, which is actually an naive model. A better model will then con-
sider energy dependent spectrum and attenuation coefficient relationship. By
integrating a more complex model, it will also require improvement of the
current pipeline to include the update of the model parameters during train-
ing process. The current physical model has fixed the parameters and only
updates the network weights. We are also limited in cement model and simu-
lation data variants. A more abundant dataset will also improve the results.
The real X-ray stop energies are now set to 60 kV and 75 kV, which are es-
sentially a small gap in the application of dual energy X-ray decomposition.
It will also help improve the performance with a larger energy gap.

Overall the result is encouraging, because it inspires the research to in-
troduce learning-based regularization in solving ill-posed inverse problem in
mathematical physicals, especially in medical physics. This work has the po-
tential to generalize to other related inverse problem if investigated enough.

6 Conclusion

Look into more complex physical model instead of a linear version. The
pipeline was trained on synthetic dataset generated using DeepDRR. Perfor-
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mance is evaluated using real X-rays acquired during femur cement injection
cadaver study. The cement decomposition result is largely improved com-
pared to traditional model-based methods. This research shows preliminary
proof-of-concept results to introduce learning-based regularization in solving
ill-posed inverse problem in mathematical physics.

7 Future Work

This work will be extended during summer research and beyond. Possible
directions include

• Look into more complex physical model instead of a linear version.

• Include physical model parameters into training and test with more
complex pipeline.

• Test more than two material situation. It is essentially still an ill-posed
inverse problem. The same insight could be generalized to solve harder
multiple material decomposition.

• After the pipeline is robust in segmenting the cement in 2D dual energy
Xrays, we will then try to use the decomposition result to reconstruct
the 3D shape of the cement and ideally monitor the 3D shape during
the injection process.

8 Management Plan

I have a weekly discussion with Dr.Unberath about the design and progress.
I also update Dr.Armand and Dr.Taylor in one-on-one meeting or group
meeting about milestones. The code is primarily developed on a work desktop
independently by Cong Gao. The current source code is now documented
and uploaded to a private github account for backup purpose.
I want to express my thanks to graduate student Mahsan Bakhtiari and Amir
Farvardin’s help in conducting femur injection experiment using the nView
system.
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[1] Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE trans-
actions on medical imaging 37(6), 1322–1332 (2018)

[2] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of mathematical imaging
and vision 40(1), 120–145 (2011)

[3] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks
for biomedical image segmentation. In: International Conference on Med-
ical image computing and computer-assisted intervention. pp. 234–241.
Springer (2015)

[4] S Saija, F Ursani, A.U., Paul, N.S.: Dual-energy imaging and digital
tomosynthesis: Innovative x-ray based imaging technologies (2016)

[5] Unberath, M., Zaech, J.N., Lee, S.C., Bier, B., Fotouhi, J., Armand, M.,
Navab, N.: Deepdrr–a catalyst for machine learning in fluoroscopy-guided
procedures. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 98–106. Springer (2018)

14


