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Mentor: Mathias Unberath, Mehran Armand, Russell Taylor 
 
Objectives: Build a learning-based end-to-end multiple material decomposition system using 
dual-energy X-ray acquisitions by explicitly including the physical constraint in the estimation 
part. 

 
Figure 1 Illustration of material decomposition. Left: Simulated X-ray projection. Right: Decomposed material of interest. 

Background and Motivation:  
 
Conventional X-ray imaging is not sufficient to characterize object precisely, especially in the 
aspect of density, material identity, volume thickness, 3D depth of the object, etc. It is then 
hard for the surgeons to identify Region of Interest (ROI) using X-rays with multiple material 
stacked intensities. Also, if the object is small, then it may not be truncated which allows for 
very good reconstructions. Thus, there is a need to develop a high-quality decomposition 
system that can separate multiple materials in projection domain. 
 
Taking dual-energy X-ray, which means acquiring two radiographs the same position at two 
distinct energies, is a popular method to enable the recover of material density and thickness 
based on the physics of X-ray formulation. According to the Beer-Lambert law, 𝑁 = 𝑁# ⋅
𝑒𝑥𝑝(−𝜇 ⋅ 𝑇) , where 𝑁# is the number of photons emitting from the source, 𝑁 is the number of 
photons received from the detector, 𝑇 is the thickness of the material, and 𝜇 is the attenuation 
parameter.  After log measurement, 𝑚. = −𝐿𝑜𝑔(𝑁/𝑁#) = 𝑇 ⋅ 𝜇, 𝑚.  and 𝜇 have formulated a 
linear relationship weighted by 𝑇. 
 
Then, in the case of two materials, we can formulate the following linear system with two 
energy projections, note as 𝐿𝐸 and 𝐻𝐸, 
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In this scenario, the analytical solution exists, because there are two unknowns for two 
equations. While in a more realistic situation with multiple materials considering energy-
dependent attenuation, the measurement will look like 

𝑚[.6,.8](𝑟) = 	−𝐿𝑜𝑔(< 𝑁#(𝐸)

.8

.6

⋅ 𝑒=∑ ?@(A)⋅B@(.)@ 𝑑𝐸)		 

Then, we have more unknown 𝑇D(𝑟) than our measurements. The problem will become 
mathematically ill-posed. Even in the above two-material situation, we are not including noise, 
disturbances, uncertainties and scatter inside the detector, which will make the solution far 
from ideal state. Including all these factors, the problem is very hard to model and resolve using 
traditional methods. 
 
Technical Approach: 
 
Thus, we propose to introduce deep learning to build end-to-end prediction framework, by 
explicitly including the physical constraint in the estimation part.  

 
Figure 2. workflow 

Figure.2 presents the overall workflow of the proposed pipeline. The input is the dual-energy 
acquisitions (𝑞F.  for high energy and 𝑞G.  for low energy X-rays). The output is the decomposed 
projection result 𝑝H, 𝑘 = 1…𝑚, for 𝑚 materials. One of physical constraints we want to 
introduce is that the reconstruction from the decomposition result should be close to the 
original input, which means ∑ 𝑝HH → 𝑞. We expect that the network can model the complex 
mapping function by training on large data samples. 
 
Simulation Study 
In order to conduct simulation study, we plan to use the recently proposed X-ray simulation 
framework – DeepDRR (Figure. 3), which is designed for fast and realistic simulation of 
fluoroscopy and digital radiography from CT scans. We can also simulate X-ray projections with 
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different energy levels. Another benefit by introducing DeepDRR is that it enables segmentation 
in 3D domain, including bone, soft tissue and air, which can be used to generate target 
decomposition projections as groundtruth images for training. 
 

 

 
Figure 3 DeepDRR Framework 

Simulation study will start from testing on two materials. Iodine is our first target, because it 
has an obvious K-edge jump in its photon attenuation at around 70keV (shown in Figure. 4), 
which is a very good feature to do dual-energy decomposition. We plan to first simulate bone 
injection cement inside the femur, which has iodine, and try to decompose it from the other 
background materials. If it works well, we then plan to test on more complicated situations. 

 
Figure 4 Iodine attenuation coefficient. 
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Real X-ray Validation 
For Real X-ray validation, we plan to use the nView system, which is a fast 3D reconstruction 
system using low dose X-ray projections. Because the X-ray projections and reconstruction have 
correspondence with this system, its 3D reconstruction data can be used to label material 
groundtruth for validation.  

 
Figure 5 Image captured from the nView system 

We plan to use this nView system to conduct femoroplasty injection experiment and collect 
dual-energy dataset during cement injection process for validation of the proposed algorithm. 
 
 
Deliverables: 
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Dependencies: 

 
 
Schedule: 

 
 
Milestones: 
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Management Plan: 
• Meeting with mentors: 

• Weekly meet with Dr. Armand and Dr. Unberath, Tuesday morning 
• Attend weekly meeting with Dr. Taylor, Friday afternoon 

• Data management: 
• Simulation data: save locally on BIGSS desktop 
• Real X-ray data:   share across BIGSS shared drive 

• Software: 
• Save locally under development, backup through Github on private account 
• Write documents and instructions for software 
• Publish on Github after work is published 
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