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Fig. 1. Anatomical landmarks of the hip anatomy. (a) shows a simulated 3D
model of the hip from [1]. (b) shows the simulated X-ray of that model, with
the same anatomical landmarks. Images from [1]. Figures from [2].

I. INTRODUCTION

Minimally invasive surgery presents a compelling alterna-
tive to traditional operating procedure. The reduced incision
size results in a lower risk of infection, less blood loss, and
cosmetically favorable outcomes for the patient. However,
operating through a small incision comes with its own set of
challenges for the surgeon. Percutaneous navigation requires
intraoperative imaging of anatomical structures. Fluoroscopy
is a popular tool for intraoperative imaging, allowing the
surgeon to view anatomical structures on a monitor in the
operating room. Although surgeons are skilled at operating in
this context, the mental burden of aligning the anatomy with a
2D image exacts an exhaustive toll. As such, recent approaches
aim to convert the 2D information obtained from fluoroscopic
X-ray images into 3D visualizations, possibly registered with
a preoperative plan based on a 3D computerized tomography
(CT) scan, in order to mitigate the surgeon’s mental effort.

A useful and convenient method for performing this 2D/3D
registration employs the notion of anatomical landmarks, such
as those shown in Fig. 1. Once these landmarks have been
accurately located in both the preoperative CT volume as
well as the intraoperative X-ray, a basis transformation can
be easily derived by solving a system of linearly independent
equations. Thus, accurately localizing as many landmarks as
possible is highly desirable. Moreover, this localization should
be performed as quickly as possible, in order to minimize
the interruption to surgical procedure. For these two reasons,
recent work has sought to automate anatomical landmark
detection.

Paper selection: Here, we review “Learning to Detect
Anatomical Landmarks of the Pelvis in X-rays from Arbitrary
Views,” which presents the first scheme for automated land-
mark detection suitable for intraoperative imaging [3]. In [3],
a stage-based deep neural network (DNN) is used to predict
belief maps for each of 23 anatomical landmarks, an approach
which has shown remarkable success in the similar problem
of human pose estimation. This approach was particularly
relevant to our ongoing work, “Improved Generalization of
Pelvis X-ray Landmark Detection,” which aims to address
shortcomings in [3] as it performs on real data.

Key contributions: The key contributions of [3] are (1) a
view-invariant data augmentation method using simulated X-
ray images, (2) a fully trained DNN architecture for anatomical
landmark detection of the hip, achieving an average detection
error of 5.6 ± 4.5mm, and (3) successful initialization of
2D/3D registration on real X-ray images. The work is the first
known investigation of anatomical landmark detection within
the context of view invariance, a property which is required for
analysis of fluoroscopic images due to the spatial constraints
of the operating room.

II. BACKGROUND

Anatomical landmarks consist of meaningful and uniquely
identifiable points in the anatomy. Establishing correspon-
dences between accurately localized anatomical landmarks
is useful for a variety of applications, but [3] is primarily
concerned with the 2D/3D registration of a fluoroscopic X-ray
image with a 3D preoperative CT scan. This is in order to pro-
vide intraoperative feedback to the surgeon in an intraoperative
manner. To this end, it is important to clarify that [3] identifies
not just locations of anatomical landmarks on an X-ray image
but actually the location of specific, predefined anatomical
landmarks. This allows a point-matching correspondence to
be established between the intraoperative X-ray and the CT.
As [3] discusses, this enables the computation of the projection
matrix P ∈ R3×4 between the two bases. If we denote
the ordered set of 2D detections as homogeneous points
{dn ∈ R3|n ∈ [1, . . . , N ]} and the corresponding ordered
set of homogeneous vectors {rn ∈ R3|n ∈ [1, . . . , N ]}, then
we can establish the following set of linearly independent
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Fig. 2. The stage-based DNN, from [3], for predicting and refining belief maps for each anatomical landmark. Each channel p in the output image corresponds
to the belief map for that landmark. Figure from [3].
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where dn = (xn, yn, wn), and N is the number of correspond-
ing landmarks.

Thus, accurately localizing the points dn is of the utmost
importance. Manually localizing these points is undesirable,
both because of the potential for error during an operation
as well as the time required, which interrupts the surgical
procedure.

Automated landmark detection, which involves the appli-
cation of computer vision algorithms to identify and localize
each landmark, has received some attention from recent work.
[3] reviews these efforts, and we shall refer to their treatment
of the subject for a more complete survey. In brief, several
approaches predict the landmark positions directly on the X-
ray image, possibly refining these estimates with a secondary
model-fitting step [3]. Another approach uses a generative
decision tree model to identify landmarks in the hand, refining
predictions in an iterative manner [4]. Some approaches [5],
[6] even use DNN architectures, such as the U-net [7],
to predict belief maps, which we describe in Sec. III, for
anatomical landmarks on the chest and spine, respectively.

All of these methods, however, focus on anatomical land-
mark detection from a single view. That is, they assume each
X-ray image is taken with the same orientation with respect
to the anatomy. For some applications, this is a reasonable
assumption, but in general—and especially for fluoroscopic
imaging—it imposes a severe constraint on the imaging pro-
cedure [3]. This is especially undesirable for intraoperative
procedures, where the possible view angles may be constricted
by surgical tools and other apparatus. As such, [3] introduces
significant data augmentation, leveraging CT scans, that results
in view-invariant landmark detection. We discuss this method
below in Sec. III.

III. METHOD

Following prior work on human pose estimation, [3] uses
a multi-stage DNN architecture to predict and refine belief

maps. A belief map p, where p ∈ [1, . . . , P ] indexes the
landmarks, is a pixel-wise likelihood model giving the “belief”
that landmark p is present in a given location. Each stage of
the DNN, shown in Fig.2, predicts a 76 × 59 × 23 image
containing the belief maps for each of the landmarks. In [3],
the output resolution is 76 × 59, and P = 23. As can be
seen in Fig. 2, the belief maps in the initial stage are not very
exact. Subsequent stages refine this initial guess by continually
incorporating global information from the large receptive field
of the previous layer with local features directly from the
initial image.

Training this network requires significant labeled data.
Since manually labeled data is expensive and also contains
the possibility for human error—due to the variability of
landmark appearance from multiple viewpoints— [3] synthet-
ically generates training data from full body CTs of the NIH
Cancer Imaging Archive [8]. In total, they manually label 23
landmarks in each of 20 full-body CT images from male and
female patients. This allows the authors to forward project an
X-ray image from the CT volume, including the landmark
positions, resulting in a labeled X-ray image of the hip
anatomy with 615× 479 pixels and an isotropic pixel spacing
of 0.616mm [3]. The corresponding ground truth belief maps
contain normal distributions centered on these landmarks. In
total, [3] generate 20,000 X-rays, and they responsibly divide
these images into training, validation, and test data in order to
validate their results.

IV. EXPERIMENTS

[3] test their approach on both simulated and real data.
On simulated data, they achieve a mean detection error of
5.6 ± 4.5mm. They also provide detection accuracy curves
for successive stages, showing that this stage-based refine-
ment of initial guesses does indeed improve detection, with
diminishing returns after a few stages. They also provide a
visualization of the detection results for X-rays viewed at
various angles. They find that, for simulated data at least, their
method performs best for X-rays taken away from the edges
of their training data. That is, the viewpoint angles which are
at the edge of the angle set that they’ve chosen are those on



which detection fared poorly. From this, one might infer that
the DNN benefited not just from each viewpoint on its own but
also viewpoints in the immediate vicinity of angle-space. The
authors suggest extending training data beyond the angle-space
they used, then validating on a narrower set of viewpoints [3].

On real X-rays, [3] use their DNN-based landmark detection
to initialize a traditional 2D-3D registration, the results of
which are shown in Fig. 3. As is shown there, their method
generalizes well to the real X-rays, but they still require a
secondary algorithm to refine the registration. Furthermore, the
DNN struggles to adapt to unseen situations, such as surgical
tool occlusion or anatomical anomaly caused by fracture.
Nevertheless, as a proof-of-concept, their method stands out as
a first-of-its-kind approach for automated landmark detection
in a mult-view manner suitable to intraoperative imaging
procedure.

V. ASSESSMENT

We find that the results in [3] are an impressive foundation
on which to build. In particular, the successful generalization
of their DNN trained on simulation data to real X-rays serves
as a significant baseline which our effort aims to improve.
We note that the shortcomings discussed in Sec. IV are a
significant obstacle to implementation in a clinical setting.
Surgical tool occlusion is certainly a given for fluoroscopic
images taken during a minimally invasive procedure.

Relevance to ongoing work: The inconvenience of re-
moving surgical tools for every registration far outweighs any
potential advantage gained from 3D visualizations of the pa-
tient anatomy with respect to a preoperative plan. Our method,
which we discussed in our project proposal, involves local
patch-based normalization which allows for global receptive
field to inform local behavior without corrupting local features.
In this way, a surgical tool in one part of the image may not
corrupt the detection of landmarks in another part, as it does
in Fig. 3.

VI. CONCLUSION

We have provided a critical review of [3], “Learning to
Detect Anatomical Landmarks of the Pelvis in X-rays from
Arbitrary Views.” We have briefly discussed their method,
which involves a stage-based DNN that predicts and refines
belief maps for each anatomical landmark, as well as their
unique data augmentation strategy, which simulates X-ray
images from multiple views based on CT volumes. We also
point out shortcomings in their method and aim to improve on
their transfer from simulated X-rays to real images, perhaps
foregoing the need for an additional registration algorithm
initialized by our procedure.
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Fig. 3. Results of 2D/3D registration using the DNN-based anatomical landmark detections as initialization for a traditional registration algorithm, in [3]. As
can be seen, the method struggles in the presence of unseen situations, such as occlusions by surgical tools (Example 4) and anatomical anomalies such as
fracture (Example 5). Figure from [3].
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