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Project: Improved Generalization of Pelvis X-ray Landmark Detection \r Computational

» Intraoperative registration of hip anatomy from
fluoroscopic X-ray.

* Deep-learning based landmark detection.

* Improved generalization leveraging simulated data.
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[1]B. Bier et al., “X-ray-transform Invariant Anatomical Landmark Detection for Pelvic Trauma Surgery,” arXiv:1803.08608 [cs], Mar. 2018.
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rays from Arbitrary Views” Sensing + Rohetics

Key contributions:
e View-invariant data augmentation method using simulated X-rays.

« Stage-based DNN architecture for anatomical landmark detection.
« First known investigation of view-independent landmark detection
suitable for intraoperative imaging.
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The Problem and Key Result: Minimally Invasive Hip Surge Computational
y y p gery Sensing + Robotics
The Problem:
* Minimally invasive hip surgery requires mentally exhaustive 2D/3D registration of intraoperative fluoroscopic
images.

* Anatomical landmark detection provides 3D information, referenced against preoperative plan.
» Fast, automated landmarked detection is essential for uninterrupted feedback in the operating room.
* Manually labeled training data is difficult to obtain, due to overlapping anatomy in X-rays.

Key Result:

¢ View-invariant landmark
detection.

¢ 5.6 +4.5 mm error on sim
images.

¢ Successful initialization of
traditional registration on real
X-rays (right).

Detection results
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Background: Automated Landmark Detection \r Computational
Sensing + Robotics

accurate candidate generation (local appearance)

Prior work: _I _I |
* Decision-tree based generative models [1] (right). _I ) ﬁl |

* Reducing the search space based on prior, anatomical information [2]. n,w 0
* DNN-based methods, using U-net, Faster-RNN, chest and spine [___coordinate descent optimization (global context) ____]

landmarks, resp. [3, 4] (below). Ileﬂ— l‘"ﬂl‘"ﬂ ”l [W
Drawback:
» Single-view landmark detection, not viable for intraoperative.
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Method: Data Generation and Stage-based DNN for Landmark Detection \r Computational
Sensing + Robotics

* Successive stages output belief maps (right) for each
landmark.

* View-invariant augmentation was used to generate
simulated X-ray images from CT volumes.

* Physically accurate simulation rendering enabled sim-to-
real transfer.

Example 2

After Stage 1 After Stage 3 After Stage 6

wP
| W T |
[
Input Image
615x479 449—

B. Bier ef al., “Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views.” It J CARS, vol. 14, n0. 9, pp. 1463-1473, Sep. 2019, doi: L0.1007/511548:019:01975:5.

Stage 1 Stage >=2

C/P : convolution/pooling
9x9 : filter size
128 : filter number

Input Image
615%479

3/4/20


https://doi.org/10.1007/s11548-019-01975-5

Experiments

Evaluation unseen sim and real images: /
e 5.6 +£4.5mm detection error on sim (below, right). /

o Computational
Sensing + Robotics

¢ Detection landmarks successfully initialize traditional 2D/3D

registration (next slide).

CRA 45°

100%

Accuracy

100 T T T

Detection Accuracy [%)]
g
-

CAU 45°

— 1 Stage

—— 2 Stages

—— 3 Stages
4 Stages

—— 5 Stages

—— 6 Stages | |
T

L
- 0 5 10 15

20 25

RAO 60° LAO 60° Distance Threshold [Pixel]

B. Bier ef al., “Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views.” It J CARS, vol. 14, no. 9, pp. 1463-1473, Sep. 2019, doi: L0.1007/s11548 019:019753.

30

Assessment

Failure to generalize to unseen situations:
» Surgical tool occlusion.

* Anatomical anomalies, e.g. fractures.
Decreased accuracy from network downsampling.

Detection results

Estimated pose
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* Enable generalization to surgical tool occlusion, anatomical anomalies.
* Improve detection accuracy, foregoing refinement by traditional 2D/3D registration.
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Fig. §-8 The architecture of the U-Net encoder-decoder used in this work.
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