

LABORATORY FOR Background Computational Sensing + Robotics Prior work: fully automate intraoperative registration using magic deep learning. Stage >= 2 Stage 1 w, C/P : convolution/pooling Input Image 9×9 : filter size 128 : filter number 615×479 w Input Image 615×479 where each map corresponds to a landmark location. During the stage-Fig. 1 Schematic representation of the convolutional neural network used in this work. A single input image is processed by multiple stages wise application, these belief maps are refined of convolutional and pooling layers, resulting in a stack of belief maps, nical landmarks of the pelvis in X-rays from arbitrary views," Int J CARS, vol. 14, no. 9, pp. 1463–1473, Sep. 2019, doi: 10 B. Bier et al., "Learning to detect anator

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image>

Delivera	ables
	simulation • Structured simulated X-ray dataset using DeepDRR framework.
Minimum	algorithm • Baseline DNN Framework using PyTorch, available on GitHub.
	Validation • Baseline Real X-ray Results using U-Net trained on real X-ray.
	Documentation • Final Report including description of DNN algorithm, validation results.
	simulation • Structured simulated X-ray dataset using DeepDRR framework.
Expected	algorithm • DNN Framework with sim-to-real domain transfer, available on GitHub.
Lapecieu	Validation • Real X-ray Domain Generalization using StageNet trained on sim X-ray.
	Documentation • Final Report including description of DNN algorithm, validation results.
	simulation • Structured simulated X-ray dataset using DeepDRR framework.
Maximum	algorithm • Deep Network software with demonstrable domain generalization from
	Validation • Ablation Study on domain generalization techniques.
	Documentation • Final Report including description of DNN algorithm, validation results.

D	ependencies	Computational Sensing + Robotics			
	Dependency	Solution	Alternative	Status	
1	Anatomical Landmark Detection Software	Work with Cong Gao	х	Solved	
2	Deep DRR Software	Work with Cong Gao	GitHub	Solved	
3	Computational Resources	Personal Workstation (2x NVIDIA GTX 1080 Ti)	MARCC	Solved	
4	Real X-ray Images for Testing	Contact Robb Grupp	Contact Russ Taylor	Solved	
5	Novel Generalization Algorithm	Undisclosed Normalization Method	Domain Randomization, Intermediate Supervision, etc.	In Progress	
6	Feedback from Mentors	Attend group/personal meetings	х	Solved	
7	Feedback from Instructors	In-class Presentations	ass Presentations Email, Office Hours		

Feb 10-16: Transfer existing codebase and simulation data to personal workstation/MARCC. Obtain Real X-ray. Brainstorm generalization methods. Feb 17 - Mar 6: Generate baseline results using U-Net architecture on real X-ray. Brainstorm generalization methods. March: Test and Refine Generalization Methods. April: Statistical Analysis of Results and Ablation Study. May: Final Presentation and Report.

12

Schedule Computational Sensing + Robotics											otics					
	Feb			Mar			Apr				Мау					
	1w	2w	3w	4w	5w	6w	7w	8w	9w	10w	11w	12w	13w	14w	15w	16w
Brainstorm & Proposal																
DeepDRR Femur Simulation																
DeepDRR Cement Simulation																
Design network architecture																
Design Loss function																
Simulation experiment																
Get access to nView																
nView system Training																
Bone injection experiment																
Real image labeling																
Validation on Real image																
Summary and Final report																
Presentation																

Management Plan Meeting with mentors: Weekly meeting with Cong Gao and Mathias Unberath, TBD. Weekly group meething with Dr. Unberath's Lab, Thursdays. Data management: Local SSD or MARCC high performace LUSTRE partition. Software: Distributed version control via GitHub on private account. Package documentation via SphinxDoc or other documentation manager. Publicly available Python package on GitHub or PIP when appropriate.

14

