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Background N

Intraoperative fluoroscopy facilitates 2D-to-3D registration for hip surgery.
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Fig.1. a) lllustration of 3D annotated landmark positions on a pelvis volume; b) Simulate DRR projection of pelvis and
landmarks; c) C-arm projection model geometry.

8. Bier et al,, “Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views,” Int J CARS, vol. 14, no. 9, pp. 1463-1473, Sep. 2019, doi: 10,1007/511548:019-01975:5.



http://jhu.edu
https://doi.org/10.1007/s11548-019-01975-5

2/27/20

Background N oot

Prior work: fully automate intraoperative registration using magic.
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where each map corresponds to a landmark location. During the stage-

Fig. 1 Schematic representation of the convolutional neural network
used in this work. A single input image is processed by multiple stages wise application, these belief maps are refined
of convolutional and pooling layers, resulting in a stack of belief maps,
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Fig. 1 Schematic representation of the convolutional neural network where each map corresponds to a landmark location. During the stage-
used in this work. A single input image is processed by multiple stages wise application, these belief maps are refined
of convolutional and pooling layers, resulting in a stack of belief maps,

Stage 1
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Fig.1. a) lllustration of 3D annotated landmark positions on a pelvis volume; b) Simulate DRR projection of pelvis and
landmarks; c) C-arm projection model geometry.

* Real data is expensive to annotate.
e Simulated data is free|y available Fig. 2 Example annotations of four specimens. The top row shows the ground truth segmentation labels for each object
N overlaid onto the fluoroscopic images, along with the landmark locations as yellow circles. The colors of cach object correspond
to those from Fig. 1. CNN estimates are shown in the second row, with ground truth landmark locations shown as yellow circles
and estimated locations shown as yellow crosshairs (+). Missed detections are indicated by a circle without a corresponding
cross. Ground truth heatmaps for the R. MOF, L. ASIS, L. GSN, and L. IOF, in (a), (b), (¢). and (d), respectively, are overlaid

and shown in the third row. Estimated heatmaps for these landmarks are shown in the bottom row. The heatmap shown in
(b) highlights a successful no detection report for L. ASIS.
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8. Bier et al., “Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views,” Int J CARS, vol. 14, no. 9, pp. 1463-1473, Sep. 2019, doi: 10.1007/511548:019-01975°5
R. Grupp et al., “Automatic Annotation of Hip Anatomy in Fluoroscopy for Robust and Efficient 2D/3D Registration,” arXiv:1911.07042 [cs, eess], Nov. 2019.
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Domain Adaptation

Labeled Source Domain Unlabeled Target Domain Images

Training data:

Testing data:

S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground Truth from Computer Games,” in Computer Vision — ECCV 2016, Cham, 2016, pp. 102-118, doi 10,1007/978-3-319-46475.:6 7.
M. Cords et al, “The Cityscapes Dataset for Semantic Urban Scene L * presented at the P of the IEEE C on Computer Vision and Pattern Recognition, 2016, pp. 3213-3223.
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Domain Generalization

/ Labeled Source Domain \

Training data:

Target domain unseen during training.

Testing data:

o )

S.R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground Truth from Computer Games,” in Computer Vision — ECCV 2016, Cham, 2016, pp. 102-118, doi 10.1007/978-3-319-46475:6 7.
M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene | " presented at the of the IEEE Confe on Computer Vision and Pattern Recognition, 2016, pp. 3213-3223.

‘ LABORI\TOR‘: FOR
Computational
P ro p 0sa I sr Sensing + Robotics

* Acquire simulated X-ray images from Deep DRR.
» Develop novel DNN architectures more suited to generalization.

« Evaluate generalization to real X-ray images.

Simulated Images (Unberath et al.) Real Images (Grupp et al.)

M. Unberath et al., “Enabling machine learning in X-ray-based procedures via realistic simulation of image formation,” Int J CARS, vol. 14, no. 9, pp. 1517-1528, Sep. 2019, doi: 10,1007/511548:019:02011:2.
R. Grupp et al., “Automatic Annotation of Hip Anatomy in Fluoroscopy for Robust and Efficient 20/3D Registration,” arXiv:1911.07042 [cs, eess], Nov. 2019.
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Structured simulated X-ray dataset using DeepDRR framework.
Baseline DNN Framework using PyTorch, available on GitHub.
Baseline Real X-ray Results using U-Net trained on real X-ray.

Final Report including description of DNN algorithm, validation results.

simulation

:
Expected

Structured simulated X-ray dataset using DeepDRR framework.
DNN Framework with sim-to-real domain transfer, available on GitHub.
Real X-ray Domain Generalization using StageNet trained on sim X-ray.

Final Report including description of DNN algorithm, validation results.

Maximum :
.

Structured simulated X-ray dataset using DeepDRR framework.

Deep Network software with demonstrable domain generalization from
simulation to real X-ray, available as a Python package for collaborators.
Ablation Study on domain generalization techniques.

Final Report including description of DNN algorithm, validation results.
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Detection Software Work with Cong Gao Solved

2 Deep DRR Software Work with Cong Gao GitHub Solved
. Personal Workstation
3 Computational Resources (2x NVIDIA GTX 1080 Ti) MARCC Solved
4 Real X-ray Images for Testing Contact Robb Grupp Contact Russ Taylor Solved
A R Domain Randomization,
5 Novel Generalization Algorithm Wil SR se N el e Intermediate Supervision, In Progress
Method -

6 Feedback from Mentors Attend group/personal meetings X Solved
7 Feedback from Instructors In-class Presentations Email, Office Hours Solved
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Timeline

Brainstorm generalization methods.

* May: Final Presentation and Report.

¢ March: Test and Refine Generalization Methods.
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* Feb 10-16: Transfer existing codebase and simulation data to personal
workstation/MARCC. Obtain Real X-ray. Brainstorm generalization methods.

* Feb 17 — Mar 6: Generate baseline results using U-Net architecture on real X-ray.

* April: Statistical Analysis of Results and Ablation Study.
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Schedule

iw 2w 3w 4w 5w 6w 7w

Brainstorm & Proposal
DeepDRR Femur Simulation
DeepDRR Cement Simulation
Design network architecture
Design Loss function
Simulation experiment
Get access to nView
nView system Training
Bone injection experiment
Real image labeling
Validation on Real image
Summary and Final report

Presentation

k Computational
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8w 9w ow 11w 12w 13w 14w 15w 16w
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* Meeting with mentors:
* Weekly meeting with Cong Gao and Mathias Unberath, TBD.
*  Weekly group meething with Dr. Unberath's Lab, Thursdays.
* Data management:
* Local SSD or MARCC high performace LUSTRE partition.
* Software:
* Distributed version control via GitHub on private account.
* Package documentation via SphinxDoc or other documentation manager.

* Publicly available Python package on GitHub or PIP when appropriate.
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