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1. BACKGROUND

Minimally invasive hip surgery is a desirable method for
many patients. Although its benefits remain controversial with
regard to pain management and recovery time, many patients
strongly prefer a smaller incision to more traditional hip
surgery [1]]. Unfortunately, these cosmetic advantages translate
to additional complexity for the surgeon. Minimally invasive
hip surgery requires navigation in and manipulation of anatom-
ical structures which are underneath unbroken skin and thus
not reliably visible to the surgeon [2]], [3]]. At the same time,
correctly aligning the cup and stem is crucial to the operation’s
success. In the past, this has been achieved by using the mini-
mal incision as a “mobile window” for identifying anatomical
landmarks, but this can result in unreliable outcomes [/1]].

Alternatively, fluoroscopic imaging provides intraoperative
2D visualization of the hip anatomy, but it presents its own set
of challenges [2]. First and foremost, the mental interpretation
of 2D X-ray images places an undesirable burden on the
surgeon, at a time when her chief concern should be correctly
aligning the hip. Computer-assisted tracking systems overcome
the requirement for mental 2D/3D registration of the image
with the anatomy [2]]. Based on the fluoroscopic image of the
hip, they can automatically track desired objects and display
their poses in the context of a preoperative plan [2].

A. Significance

The systems we investigate here involve the registration of
intraoperative 2D fluoroscopic images with a 3D preopera-
tive model. Improper initialization of traditional registration
algorithms, such as Iterative Closest Point (ICP) and its many
variants, can lead to large registration errors. This is because
of the numerous local minima which may exist in the cost
optimization’s function. A better “first guess” makes it much
more likely that ICP converges on the actual minimum, a
reliable registration. This first guess typically takes the form
of human input, identifying anatomical landmarks in the hip
anatomy, such as those shown in Fig.[I] Yet human input is un-
desirable for two reasons. First and foremost, the time required
for human landmark annotation is not insignificant. Even a 4-
5 second delay interrupts the surgical procedure, resulting a
disjointed alignment process. Sub-second registration, on the
other hand, would allow more continuous adjustment of the
cup and stem.
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(a) Simulated Model

(b) Simulated X-ray

Fig. 1. Anatomical landmarks of the hip anatomy. [(@)] shows a simulated 3D
model of the hip from [4]. [(6)] shows the simulated X-ray of that model, with
the same anatomical landmarks. Images from [4].

B. Specific Aims

Prior work has shown that deep learning (DL) based
techniques can identify anatomical landmarks in a fast and
reliable manner, in order to initialize an ICP algorithm [2],
[5]. Unlike ICP algorithms, deep neural networks (DNNs)
learn generalizable features from labeled training data, and use
them to interpret previously unseen images [6]. For example,
[5] use simulated images to generate arbitrarily large training
data with perfectly known ground truth anatomical landmarks.
They show that a multi-stage DNN trained on these simulated
images can generalize well to real-world images but are
susceptible to scenarios not seen during training [5]]. A surgical
tool which occludes the image can severely compromise the
DNN’s ability to detect anatomical landmarks. Since the goal
of automatic landmark detection is continuous, intraoperative
feedback for the surgeon, it would be impractical for the
surgeon to withdraw her tools during every registration. Thus,
we aim to improve the generalization of DNNs from simula-
tion to real-world scenarios which are not encountered during
training.

There are many possible approaches for improving sim-
to-real generalization. We propose using a novel patch-
normalized convolution (PNC) layer, which constrains feature
descriptors to a local region at every scale, described in
Sec. Based on preliminary results, PNC shows an improved
ability to generalize to unseen types of noise, especially
additive noise patterns and contrast adjustments. We anticipate
that DNNs which employ PNC will be particularly effective
for occlusions by surgical tools due to the high contrast
between these tools and typical intensities for an unoccluded
X-ray.
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Patch-normalized convolution consists of separate normalization parameters for each receptive field, or “patch.” When a value is shared by two

receptive fields, it must be functionally duplicated before being processed by the convolution.

II. DELIVERABLES
See Table [l

III. TECHNICAL APPROACH

(The formulations in Sec. [[II-A] [[I-B] [[II=C| are from a
forthcoming paper by the authors. They are original work and
are included here for completeness since they cannot yet be
found in the literature. However, the focus of our proposal is
the application of patch-normalized convolution, rather than
its theoretical formulation.)

Much of the recent success in computer vision is due to the
advent of the deep convolutional neural network, which has at
its core the convolutional layer. We propose to apply DNN
architectures based on prior work to anatomical landmark
detection, incorporating a novel type of convolutional layer,
the Patch-normalized Convolution (PNC). We hypothesis
that the spatially local nature of the PNC layer as well as
its robustness to noise will enable greater generalization to
real X-ray data. We refer to [7]] and [[8] for a discussion of the
U-Net and stage-based DNN architectures, respectively, which
we will employ for landmark detection.

State-of-the-art DNNGs, including the afforementioned U-Net
and stage-based network, usually pair a convolutional layer
with a normalization layer [9]. Here we review these concepts
briefly in order to lay the groundwork for PNC, which com-
bines a convolution with a kernel-dependent normalization.
For a more detailed treatment of convolutional layers, we refer
the reader to [9] and, for the normalizations we discuss, [10].

A. Convolutional Layer

For simplicity, we formulate the 2D convolutional layer over
a single kernel, omitting the consideration of an additive bias.
Let x € REXWXC be a map of feature vectors, such as an

image, where C' is the number of input channels. In an RGB
image, for example, C' = 3, whereas for deeper convolutional
layers, C' may be much larger. Let k € R+ x(2r+1)xC pe 5
kernel with size (2r+1)2. The stride s of the convolution is the
interval between sample points in x, and the padding p is the
width of a border often added to x in order to preserve image
dimensions [6] In general, both the kernel size and stride may
have different values in the horizontal and vertical directions,
but this is not often seen in practice.

The convolutional layer computes an output image y €
RA>W" with values
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where

j=@"-s)—p+r, @

and H', W' are computed similarly. Often, y,/ j/ is referred to
as an output neuron and k as a feature filter. This is because
Yy 4 1s “activated” where the image x contains patterns similar
to k.

The receptive field of a neuron at any layer in the network
is typically defined as the pixels in the initial input image
that contribute to its calculation. For very deep layers in the
network, the receptive field for a single neuron can encompass
the entire input image, but for early layers it is much smaller.
In particular, output neurons in the first convolutional layer
have a receptive field determined by the kernel size, and this
property holds when considering immediate receptive fields
throughout the network. That is, the receptive field of a neuron
yi ;» from its input feature tensor x consists of the components

Rirji(x) = {acgfr)u’j+v\u,v €[-rr],cel,C]}, (3

i=@G-s)—p+r,



Algorithm DNN for landmark detection.

Implementation ~ PyTorch Implementation, Made Public on GitHub
Minimum Validation Anatomical landmark detection results on real data, matching prior work.

Documentation Inline code documentation.

Presentation Final written report, in-class presentation.

Algorithm DNN for landmark detection using PNC.

Implementation ~ PyTorch implementation, made public on GitHub, ready for academic use.
Expected Validation Anatomical landmark detection results on real data, exceeding prior work.

Documentation Organized and complete code documentation.

Presentation Final written report, in-class presentation.

Algorithm DNN for landmark detection using PNC.

Implementation ~ PyTorch implementation, made public on GitHub, ready for academic use.
Maximum Validation Anatomical landmark detection results on real data with demonstrable generalization.

Documentation Organized, complete code documentation, final report, academic publication.

Presentation Final written report, in-class presentation, academic publication.

TABLE I
DELIVERABLES

which are involved in the summation in (T)). In Section [[II-C}
we discuss the patch-normalized convolution, which utilizes
R.

B. Normalization Methods

A popular family of normalization methods involves learn-
ing an ideal distribution parameterized by vy and . These
methods compute image statistics to first normalize the inputs
to a unit range, then rescale the inputs to match a distribution
with mean /3 and variance -;
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where € is a small positive number.

The calculation of image mean p and variance o2 de-
pends on the choice of method. These methods include batch
normalization (BN) [11]], instance normalization (IN) [12],
layer normalization (LN) [13]], and group normalization (GN)
[10], with the most popular being batch normalization. To
distinguish between these, let S;(x) denote a set choice of
elements in the input image, where ¢ is an index. Each method
utilizes a different definition of S to compute
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In BN [11]], for instance, the statistics are computed over
multiple images, but separately for each image channel:

Stetivgucomn)(x) = {25 e = e} (6)

We refer to [[10] for a full treatment of IN, LN, and GN. Here,
the crucial point to note is that for each of these methods, S
does not depend on the spatial indices i, 5. In Sec. [lII-C] we
describe a novel normalization technique which restricts the
normalization to a local region.
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C. Patch-normalized Convolution

PNC combines a novel normalization technique with a
modified convolutional layer to compute image features based
on local normalization. This is accomplished by computing
the image statistics in Eq. 5] over the receptive field, i.e. S =

R jr(x) (see also Eq. [3).
St=(iv,jocome) (X) = {xi—f;") lc=¢i}. (7)

Note that for convolutions where s < 2r, receptive fields
overlap, as shown in Fig. For this reason, the initial
normalization cannot be fully decoupled from the convolution.

Following our formulations above, the PNC layer computes
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where mu; ; and o; ; are computed over R, j/(x). Note that
due to the duplication of memory, a naive implementation
of Eq. [8| faces serious efficiency concerns. Fortunately, a
reformulation of Eq. [§allows for much more efficient memory
utilization, taking advantage of box kernels to compute p and
o2, However, the details of this more efficient formulation are
beyond the scope of this proposal.

IV. DEPENDENCIES

Our primary dependencies are simulated and real fluoro-
scopic images of the hip with anatomical landmarks. Simulated
X-ray data has been used in an ongoing manner by Cong Gao.
Fortunately, these are already resolved. The real X-ray data
requires some formatting, for which Robb Grupp is an ongoing
contact. Additionally, we are heavily reliant on advanced com-
putational resources for experimentation and ablation studies
of any proposed method. The MARCC compute cluster is a
reliable high-compute system with multiple redundancies for
high-capacity data storage. Alternatively, we have guaranteed
access to two personal workstations with high-speed SSD
primary drives and high-capacity HDD backup data drives.
Any code, documentation, or statistical results are version-
controlled and backed up using GitHub.

Recently, based on [8]], we realized it might be of academic
interest to evaluate our method’s generalization ability to
images which are occluded by surgical tools in a previously
unseen manner. Although this is not core to our aim of im-
proving sim-to-real generalization, it is nevertheless of interest.
Therefore the effort to obtain real images with surgical tool
occlusions is ongoing.

Table |lI| summarizes all our dependencies.


https://github.com
https://github.com
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Anatomical Landmark Detection Software Gene?allZlng*PelVlS*LandmarkaeteCtlon NA v~
Repository Access
aD;:SPDRR IDigsst @iF Stz [Ferassasi |- Transfer from Cong Gao NA On Personal Workstation
Computational Resources (GPU) MARCC Cluster Access Personal Workstations (3x total GPUs) Allocation Granted
Real X-ray Images for Testing Robb Grupp NA On BIGSS Shared Drive
Real X-ray Images with Occlusions (new) Authors of |I§|] Mathias Unberath) | IN PROGRESS
Efficient PNC PyTorch Implementation Xingtong Liu NA | Vv
TABLE II
DEPENDENCIES

Obtain simulated X-ray data from Cong Gao | 02/15 v’
Obtain Real X-ray data from Robb Grupp 02/11 v’
Finalize simulation training pipeline 03/01
Finalize Real X-ray validation pipeline 03/07
Finalize DNN architecture/algorithm 03/21
Finish ablation study 04/14
Finish statistical analysis 04/21
Presentation 05/05
Final report 05/15
Academic publication TBD
TABLE III
MILESTONES

V. MILESTONES AND STATUS

See Table [

VI. SCHEDULE

See Table [[V]

VII. MANAGEMENT PLAN

Ongoing communication between the student, Benjamin
Killeen, and the direct mentor, Cong Gao is facilitated by
Slack and workspace proximity. Weekly meetings have been
arranged to discuss progress among the student and both men-
tors, including Mathias Unberath. Version control is facilitated
via GitHub.
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