
Anatomical virtual fixture assisted
mastoidectomy

Anatomical virtual fixture assisted mastoidectomy
I. Basic Info (->Summary)
II. Background, Specific Aims, and Significance
III. Technical Approach

3.1 Constraint Optimization
3.2 Polygon Mesh
3.3 Polygon Mesh Constraint Alogrithm
3.4 *Feature 1: Extending the tool tip point to a sphere
3.5 *Feature 2: Adding Slack Variable
3.6 *Feature 3: Tool Shaft Modeling
3.7 *Feature 4: Automatic Tool Retraction
3.8 Simulation System

IV. Management Summary
4.1 Original Version

Step 1: Getting started
Step 2: Integrate Mesh Constraint to Galen Robot
Step 3: Test the constraint formulation

4.2 Revised Version
Step 1: Getting started
Step 2: Integrate Mesh Constraint Formulation to Galen Robot Controller Code
Step 3: Test the integrated controller in simulation, using simple robot model
Step 4: Test the integrated controller in simulation, using Galen Robot model

V. Deliverables
5.1 Original Version
5.2 Revised Version

VI. Dependencies
VII. Project Bibliography
VIII. Research Log
IX. Appendix

I. Basic Info (->Summary)

Student: Yiping Zheng
Mentor: Max Li, Dr. Taylor
Group Size: 1
Group No. 7
Skills Requirement: CISST-SAW library, Slicer, ROS, C++, motion planning, nonlinear control
Goal: Create a motion planning demo for Galen robot to perform robot-assisted mastoidectomy
task

II. Background, Specific Aims, and Significance
Most of surgeries require highly precise manipulation from surgeons which can be very time-and-
energy consuming. For example, Mastoidecotmy is a delberate surgical procedure which is important
to the treatment of diseases such as cochlear implant, acoustic neuroma etc. Surgeons have to
mechanically drill a hole on patient's skull and all the way down to the meningeal, meanwhile carefully
avoiding sensitive anatomy structure such as facial nurve, sigmoid sinus, and arteries. The drilling
process is a challenging process to surgeons which often lasts 8 hours.

Surgical robots such as da Vinci Surgical System can mitigate the challenges by extending human
capabilities. However, mainly because of the precision requirement of mastoidectomy is very high, so
far there hasn't been any application or attempt of robot assisted mastoidectomy to our best
knowledge.

Virtual fixture is software motion constraints, can further reduce the operational difficulties by allowing
the surgeon and robot to work together to complete the surgical task with improved stability,
reliability and precision. By tracking the relative position of the surgical tool with regard to patients
body, it can stop the surgeon from making sudden motions and accidentally damaging critical
anatomies and have the potentiality to make the robot assisted mastoidectomy possible. However
due to the difficulty in finding a good geometry representation with respect to the geometric
complexity of anatomical tissues, the application of virtual fixture is limited. So far no one has
attempted to apply it to very complex anatomies such as temporal bone.

Recently, a new virtual fixture generation algorithm was proposed which fits the scenario of
mastoidectomy well. By obtaining the 3D data of patient's skull, either pre-operatively via CT scan or
intra-operatively via 3D ultrasound, it can generate virtual fixtures online from polygon mesh
representations of complex anatomical structures and provide dynamic constraint formulation for the
planning and algorithm. The algorithm has been testified through validation and runtime experiments.

In this project, I'm going to integrate this anatomical virtual fixture generation algorithm with Galen
surgical robot and perform a demo of robot-assisted mastoidectomy, which may be very useful to
avoid touching patient's critical anatomy structure and mitigate surgeons' tension in the procedure.

III. Technical Approach
Since our goal is to follow the new algorithm proposed in [1], create a demo based on it and possibly
improve its performance. So in Part 3.1~3.3 of the approach section, the approach of [1] will be
presented again and followed with some algorithmic improvement of my own, which is in Part
3.4~3.9.

3.1 Constraint Optimization
Constraint optimization approaches are well-established methods to implement virtual fixtures. In this
project, we formulate robot kinematic motion control as a quadratic optimization problem with linear
constraints. Objective function solved for the desired motion:

where and are the computed and desired incremental Cartesian positions, and is the
incremental joint position. is the Jacobian matrix relating the joint space to the Cartesian space.
and are matrix and vectors necessary to describe the linear constraints.

In a telemanipulated control environment, in the objective function is computed from the motion
of the master manipulator. Additional objectives may be added to express additional desired
behaviors. Otherwise, in cooperative control setting, is computed from the force sensor input.

Inequality constraints can be used to impose motion constraints. For example, a virtual forbidden
wall for tool tip can be defined by a hyper-plane with normal and point , i.e. tool tip can only
move on the positive side of the hyperplane as shown in Fig. 1. This can be achieved by forcing the
signed distance from the tool tip to plane at any time to be positive, i.e.,

where is the change of the signed distance. The constrained motion can be realized by setting
 and . The constrained least-squares problem may then be solved to

Δx−Δx
Δq

argmin ∥ d∥2

subject to AΔx ≥ b, Δx = JΔq

∆x ∆xd ∆q
J A

b

∆x

∆x

x n p

dt t

dt−1

Δd

dt

n ΔxT

= n (x− p)T

= n ΔxT

= d +Δd ≥ 0t−1

≥ −n (x− p)T

Δd

A = n b = −n (x−T p)

produce the desired motion. Additional terms may be added to further constrain the tool motion.

3.2 Polygon Mesh
In this work, polygon meshes consisting of triangles are used to represent anatomical surfaces. A
locally concave surface (Fig. 2a) produces a convex set of linear constraints. It is safe to include all
triangles as plane constraints (Fig. 2b). A locally convex surface (Fig. 2c) produces a non-convex set
of linear constraints. Naively adding all triangles as plane constraints will rule out many allowable
regions (Fig. 2d). This necessitates an approach to dynamically activate and deactivate the
constraints based on the local convexity and concavity of the anatomical surfaces.

3.3 Polygon Mesh Constraint Alogrithm
Instead of considering the whole mesh object, a motion sphere is built around the current position
with the radius defined by the maximum motion capable of the robot in one control iteration (shown
as the sphere in Fig. 1). The triangles intersected by the motion sphere are the only necessary ones to
be considered in the current iteration. To enable efficient geometric-search intersection, the
anatomical mesh is stored as a Principle Direction Tree (PD-Tree) [14]. The PD-Tree is similar to the
KD-Tree, but with nodes split along the maximum distributive direction of the data. This provides an
additional boost in search efficiency especially when triangles are not uniformly distributed. During
the PD-Tree construction, the adjacency information of the triangles is stored. Using the PD-Tree of
the anatomy and the motion sphere of the tool position, the corresponding closest points CP and
face normals N of each intersected triangle are returned.

We use the Polygon Mesh Constraint Algorithm developed in [1] to generate proper anatomical
constaints for the motion planner. And we use constraint optimization algorithm to command the
robot to stop in close proximity to the patient's tissue.

The algorithm is described as follows,

3.4 *Feature 1: Extending the tool tip point to a sphere
Above we assumed that the tool tip is a geometric point, this holds true for the sharpness of most of
the surgical tools, but this isn't inclusive. There exists some surgical tools with blunt tip. Therefore,
with regard to generality and compatibilty, it'll be better to use a sphere to model the shape of the
tool tip, since with the sphere model, we can have a radius variable to adjust to the sharpness of the
tool tip. This can be achieved through modifying formula 2 as follows.

We need to change the code implementation to add the sphere model feature.

3.5 *Feature 2: Adding Slack Variable

dt

n ΔxT

= d +Δd ≥ rt−1

≥ −n (x− p) + rT

During the surgery, surgeons sometimes need to violate some virtual fixture constraints of the
patient's tissue in order to perform cutting or drilling operation. In order to implement this, we nee to
set a slack variable for every active constraint to represent to what extent it can be violated. If some
certain virtual fixture constraints are violated in the current planning-and-moving iteration, it should
be recorded and automatically added to the next iteration as active constraints, since it might not be
recognized as active constraints by the activeconstraint-selection algorithm.

3.6 *Feature 3: Tool Shaft Modeling
Currently, we've only considered the tool tip, either modeling it as a point or a sphere. However,
practically, the whole tool shaft should all be considered in the motion planning algorithm. Based on
the current point-based algorithm, we propose a sampling based method by which the current
algorithm can be extended to the scope of the whole tool shaft.

We plan to generate some points evenly distributed in the region of the tool shaft and generate a
sphere at each sample points. The radius of each sphere can be adjusted to finely fit the shape of the
tool shaft. But for validation, we will only consider the simplest case, model the tool shaft as a
cylinder. We will attach 3 rotation variables to the state x, making it 6-Dof. We'll have to adjust the
Jacobian matrix accordingly, and modify the construction of the constraint matrix, enabling it to take
all the active constraints of all the sample points, with regard to 6 state variables.

The intermediate distance of sample points is deliberately chosen to be 0.88*sphere_radius so that
the sampling density is optimally balanced between the sampling efficiency and the gap between two
sample spheres.

3.7 *Feature 4: Automatic Tool Retraction
In many surgical navigation scenario, when surgeons have inserted a tool into patient's body, the
retraction process can be automated by following the same path and can be accelerated by
interpolating and smoothing the 1st order of insertion trajectory. This automatic tool retraction feature
can save surgeons some energy and shorten the overall surgery time. This idea is implemented by
first recording the insertion trajectory, interpolating intermediate points with various density according
to the time stamp of the recorded trajectory points, and reversing the whole sequence, playing from
end to the beginning.

Following is the position and velocity trajectory of the retraction process, compared to that of the
insertion process.

n ΔxT

s

= −n (x− p) + r + sT

≥ 0

3.8 Simulation System
For front-end visualization，we choose the 3D Slicer software which is dedicated to image-guided
robot-assisted interventions. It can commnunicate with ROS system through a protocol called IGTL
bridge, which is depicted below.

And Since all the back-end functions are based on the CISST and SAW library, which offer ROS
communication interface, the front-end and back-end are compatible. The complete Architecure is
shown below.

IV. Management Summary
Below two versions of steps and milestones are kept. One original version, representing the idealistic
plan, which demonstrate the ultimate goal of the project and is still expected to accomplish beyond
the scope of this course. One revised version, representing the compromised plan due to 2019-nCov
situation.

4.1 Original Version

Step 1: Getting started

Write proposal, give presentation and construct the wiki page.
Get familiar with the CISST code base (focused on numerical environment)
Milestone: Complete the task of loading mesh stl binary file and add it to the library. (ASCII file
version is already there)
Date: Mar. 5 ~ Mar. 15 (10 days)
Status: 100%

Step 2: Integrate Mesh Constraint to Galen Robot

https://github.com/jhu-cisst/cisst/wiki

Learn the usage of Galen Robot.
Milestone: Test the existing code examples on Galen Robot.
Date: Mar.16 ~ Apr. 5 (20 days):
Status: 100%

Step 3: Test the constraint formulation

Integrate the constraint formulation with simple geometry obstacle
Integrate the constraint formulation with 3D phantom of patient anatomy.
Complete the user study (if possible)
Date: Apr. 6~ May 1 (25 days)
Milestone: a video to demonstrate the Galen robot can actually perform the above tasks.
Status: 0%

4.2 Revised Version
The focus has shifted from creating the real-world demo to strengthening the robustness of the mesh
constraint algorithm and creating a demo in simulation.

Step 1: Getting started

Write proposal, give presentation and construct the wiki page.
Get familiar with the CISST code base (focused on cisstNumerical, and the SAW Constraint
Controller part)
Milestone: Complete the task of loading mesh stl binary file and add it to the library. (ie. feature
1)
Date: Mar. 5 ~ Mar. 19 (14 days)
Status: 100% (Step 1 is fully fulfilled, feature 1 is already integrated into the CISST code.)

Step 2: Integrate Mesh Constraint Formulation to Galen Robot Controller
Code

Get familiar with the cisstICP
Adding slack variable of soft constraints to the optimal controller. (ie. feature 2, this is also the
minimum deliverable)
Milestone: Pass compilation of the integrated Galen Robot cotroller.
Date: Mar.20 ~ Apr. 5 (14 days):
Status: 90% (Step 2 is fully fulfilled, feature 2 is implemented but simuilation tests are still going
on. Potential bugs could exist.)

https://github.com/jhu-cisst/cisst/wiki
https://github.com/jhu-cisst/cisst/wiki/cisstNumerical-tutorial
https://github.com/jhu-saw/sawConstraintController/wiki
https://git.lcsr.jhu.edu/zli122/cisstICP

Step 3: Test the integrated controller in simulation, using simple robot
model

Test the controller with a simple robot model (eg. UR5 robot arm)
Test the controller with 3-Dof translation-only motion.
Test the controller with simple geometry obstacle.
Test the controller with 3D phantom of patient anatomy. (online data source)
Improving the mesh-constraint algorithm with respect to the whole surface (use sphere model) of
the end-effector, rather than modeling it with a point. (This is also the expected deliverable)
Test the controller with 6-Dof motion (feature 3).
Date: Apr. 6 ~ Apr. 20 (14 days)
Milestone: a video to demonstrate a simple robot can actually perform the above tasks in
simulation.
Status: 20% (Tests are still going on due to the complexity of the simulation environment.)

Step 4: Test the integrated controller in simulation, using Galen Robot
model

Integrating the tested controller into the Galen Robot code base.
Test all the above tasks with respect to the Galen Robot's forward kinematics and Jacobian
matrices.
Date: Apr. 21 ~ Apr. 30 (10 days)
Milestone: a video to demonstrate the Galen robot can actually perform the above tasks in
simulation.
Status: 0% (It cannot be fulfilled since the Galen robot's visualization model isn't ready, the.
Instead, feature 4 is proposed and implemented.)

V. Deliverables
Likewise, here we kept 2 versions of deliveralbes, idealistically original plan A and relistically revised
plan B.

5.1 Original Version
Minimum: Simple geometry code integration
Expected: Patient anatomy code integration(3D phantom)
Maximum: Complete the user study.

5.2 Revised Version

https://3dprint.nih.gov/discover/3dpx-012589

Since the laboratory access is not achievable any more, the goal for the CIS2 project has been
shifted to simulation environment accordingly, and improving its robustness, rather than creating a
demo in real world.

Minimum: Implement feature 1.
Expected: Implement feature 2/3.
Maximum: Implement feature 4.

All 4 features have been written and passed compilation (code can be found in the appendix). Tests
are still going on due to the complexity of the simulation environment. After all the tests are done, a
simulation demo will be created and a push request to the CISST code base will be made. (by the
end of May)

VI. Dependencies

Item Contact Alternatives Status Notes

Galen Robot Access Max None N/A
Due to CoVID, plan
change accordingly

A computer My PC Dr. Taylor
PlanA
succeeded

Hardware

CISST-SAW Code
Base Access

Max None
PlanA
succeeded

Data Structure &
Surgical Robot Model

Preoperative CT
scan model

Pete
CT scan model
from Internet

PlanA
succeeded

Testing Data (facial
nerve)

CISST ICP Max None
PlanA
succeeded

An Independent Module

Slicer + ITGL + ROS Max None
PlanA
succeeded

Visualization Tool

Galen Robot Model Can use UR5 model
PlanB
succeeded

For demo, Visulization
and Debugging

VII. Project Bibliography

1. Zhaoshuo Li et al. Anatomical Mesh-Based Virtual Fixtures for Surgical Robots (unpublished by
Mar. 2020)

2. Funda, J., Taylor, R. H., Eldridge, B., Gomory, S., & Gruben, K. G. (1996). Constrained Cartesian
Motion Control for Teleoperated Surgical Robots. Robotics, 12(3).

3. Xia, T., Kapoor, A., Kazanzides, P., & Taylor, R. (2011). A constrained optimization approach to
virtual fixtures for multi-robot collaborative teleoperation. IEEE International Conference on
Intelligent Robots and Systems, 639–644. https://doi.org/10.1109/IROS.2011.6048816

4. Li, M., Ishii, M., & Taylor, R. H. (2007). Spatial Motion Constraints Using Virtual Fixtures
Generated by Anatomy. 23(1), 4–19.

5. Kapoor, A. (2008). Motion constrained control of robots for dexterous surgical tasks.
6. S. A. Bowyer, B. L. Davies and F. Rodriguez y Baena, "Active Constraints/Virtual Fixtures: A

Survey," in IEEE Transactions on Robotics, vol. 30, no. 1, pp. 138-157, Feb. 2014, doi:
10.1109/TRO.2013.2283410.

7. Masotidectomy Video https://www.youtube.com/watch?v=jnonLwxW2Cg
8. 3D Slicer Simulation Environment Tutorial https://rosmed.github.io/ismr2019/prerequisite
9. CISST-SAW Code Base https://github.com/jhu-cisst/cisst/wiki

10. cisstICP Code Base https://git.lcsr.jhu.edu/zli122/cisstICP
11. VF guided skull cutting using ultrasonic cutter and dVRK

https://github.com/mli0603/PolygonMeshVirtualFixture
12. Galen Model Base https://bitbucket.org/GalenRobotics/researchrepo/src/master/source/robot/
13. STL reader https://github.com/sreiter/stl_reader
14. STL parser http://www.dillonbhuff.com/?p=5

VIII. Research Log
Weekly Meeting Log

IX. Appendix
My Code Base

https://doi.org/10.1109/IROS.2011.6048816
https://www.youtube.com/watch?v=jnonLwxW2Cg
https://rosmed.github.io/ismr2019/prerequisite
https://github.com/jhu-cisst/cisst/wiki
https://git.lcsr.jhu.edu/zli122/cisstICP
https://github.com/mli0603/PolygonMeshVirtualFixture
https://bitbucket.org/GalenRobotics/researchrepo/src/master/source/robot/
https://github.com/sreiter/stl_reader
http://www.dillonbhuff.com/?p=5
https://ciis.lcsr.jhu.edu/dokuwiki/lib/exe/fetch.php?media=courses:456:2020:projects:456-2020-07:meetingnotes.pdf
https://github.com/Yiping-Steven/GalenVFPlus

