Evaluation of HMD-Based Navigation for Ventriculostomy

Maia Stiber

Mentors: Ehsan Azimi, Peter Kazanzides, Chien-Ming Huang, Dr. Judy Huang, and Dr. Camilo Molina

Importance of Ventriculostomies

Ghandorh, Hamza & Mackenzie, Justin & De Ribaupierre, Sandrine & Eagleson, Roy. (2017). Development of Augmented Reality Training Simulator Systems for Neurosurgery Using Model-Driven Software Engineering. 10.1109/CCECE.2017.7946843.

Current HMD Navigational System

HMD Workflow: Registration

HMD Workflow: Path Planning and Insertion

Project Goals/Aims

- Evaluate HMD Navigational system
- See if AR-guided ventriculostomy is preferred by neurosurgeons

Minimum:	User Study Results written as part of a submitted MICCAI 2020 paper
Expected:	Video Analysis Results
Maximum	 Script to improve aid in depth perception Adaptive prompts based on wearer's behavior Improved visualizations

Technical Approach: User Study

- **Hypothesis:** AR-Guided ventriculostomy improves accuracy and decreases mental task load compared to baseline
- Within-subject study (with and without AR guidance)
- 3 targets
- 10 participants
 - All Medical or Engineering backgrounds
 - Somewhat familiar with MR devices (M = 2.7, SD = 0.82 on a 5-point scale)
- Note: One of the participants is a neurosurgeon

User Study: Phantom

User Study: Task Accuracy

- Distance between catheter tip and target
- Distance between catheter line and target

Results: Task Accuracy (Line)

- Significant improvement from Baseline to MR
 - F (1, 18) = 6.24, p = .022
- Average MR Distance: 7.63mm
 - Neurosurgeon Average: 7.7mm
- Average Baseline Distance: 12.21mm
 - Neurosurgeon Average: 10.4mm

Results: Task Accuracy (Tip)

- Marginal improvement from Baseline to MR
 - F (1, 18) = 4.14, p = .057
- Average MR Distance: 10.96mm
 - Neurosurgeon Average: 9.37mm
- Average Baseline Distance: 16.93mm
 - Neurosurgeon Average: 13.3mm

Workflow Timing

Average: 19.67s Neurosurgeon: 11.72s

Average: 59.1s Neurosurgeon: 18.99s

Average: 19.44s Neurosurgeon: 10.14s

Insertion Time Per Condition

Baseline Average: 18.4s

 Neurosurgeon Average: 10.44s

- MR Average: 20.9s
 Neurosurgeon Average: 13.44s
- Noticeable difference
 p = 0.039

User Study: System Usability Scale

- MR system reasonably usable for performing procedure
 - M = 77.25, SD = 14.69
 - Suggested usability score of 70*
 - Neurosurgeon Reponse: 75

Future Work

- Finish script which adaptively prompts user to move head when inserting catheter
- Run user study with all neurosurgery residents
- Real-time catheter tracking:
 - Catheter Alignment Feedback
 - Insertion Depth
- Adaptive training for users

Lessons Learned

- AR in medical procedures
- Design and run a user study
- Data analysis

Thank you to

- Ehsan Azimi
- Dr. Peter Kazanzides
- Dr. Chien-Ming Huang
- Dr. Camilo Molina and Dr. Judy Huang
- Zhiyuan Niu
- Ruby Liu
- Nicholas Greene
- Nikhil Dave

Questions?