Developing Collateral Control
Systems for robotic surgical
training

By: Bryan Birthwright and Joao Kawase
Mentor: Dr. Adnan Munawar Ph.D

CIIS Project
May 5, 2020

Problem Background

Q Asof 2019, over 2,800 hospitals have da Vinci systems installed (1)

a In 2017, Intuitive estimates that over 875,000 da Vinci procedures were
performed (1)

Q “researcher reckons that at most, one out of five residents at top-tier
INnstitutions are succeeding at robotic surgery” (2)

Q Due toscarcity of da Vinci devices, hands-on time with these machines is
difficult to obtain (3)

Q Over 170 surgeons worldwide operating Da Vinci machines world wide, it is
crucial that thorough and effective training technigues are widely available

to everyone (3)

M Perez, R, & Schwaitzberg, S. (2019). Robotic surgery: finding value in 2019 and beyond. Annals Of
Laparoscopic And Endoscopic Surgery, 4. doi10.21037/ales.2019.05.02

(2) https/wwwwired.com/story/med-students-are-getting-terrible-training-in-robotic-surgery/

(3) https//futurism.com/the-byte/surgeons-barely-trained-operating-robots

https://www.wired.com/story/med-students-are-getting-terrible-training-in-robotic-surgery/
https://futurism.com/the-byte/surgeons-barely-trained-operating-robots

Significance

Q Creating an new and effective training system could allow for
decreased training times and acquisition of proficiency by
surgical residents, allowing them to hone their skills and gain
more efficient hours of training under simulations

d Virtual training environment allows for accessibility of system so
programs and students around the world can utilize it

-

Cir Esp. 2013;91:67-71

Project Approach 1 1

Implement collateral control capabilities in AMBF
Create suite of training puzzles/exercises for AMBF

Code data collection script to record key performance
Mmetrics from users in the virtual environment

All images are copyright of Dr. Munawar

Dual Control Implementation

1 Adding code to allow simulator to recognize
multiple dvrk consoles

1 Root linking consoles so dvrk consoles both control
the same virtual end effectors

1 Adjusting controller and haptic gains to generate
different dual control schemes: Symmmetric Input -
Symmetric Output (SISO), Symmetric Input -
Asymmetric Output (SIAO), Asymmetric Input -
Symmetric Output (AISO), Asymmetric Input -
Asymmetric Output (AIAO)

Dual Control Implement@;

MTM2L:

MTM1L:
hardware name: MTM1L
workspace scaling: 5

simulated multibody: "../multi-bodies/grippers/pr2 gripper small red.yaml"

haptic gain: {
linear: 0.03,
angular: 1 }

controller gain: {

linear: {P: 20.0, D: 2.0},
angular: {P: 5.0, D: 1.0}}

location: {

position: {x: -0.5,

orientation: {r: o,
button mapping: {

als: 1,

a2: 6,

next mode: 3,

prev mode: 4}

pair cameras: [camera2] # The cameras paired with this IID-SDE pair

visible: True
visible size: 0.005

a SIAO:
a AISC:

(MTM2L) haptic gain: {L:
(MTMIL) controller gain:
(MTM2L) controller gain:
a AIAO: (MTMIL) haptic gain: {A:0.0},
(MTM2) haptic gain: {L:0.0},

hardware name: MTM2L
workspace scaling: 5
#simulated multibody:

T—

'../multi-bodies/grippers/pr2 gripper small red.yaml"

root link: "/ambf/env/BODY r_gripper_palm_link"

haptic gain: {
linear: 0.03,
angular: 1 }
controller gain: {
linear: {P: 20.0, D: 2.0}
angular: {P: 5.0, D: 1.0}}
location: {
position: {x: -0.5, y: 0.0,
orientation: {r: 0, p: 0.0,
button mapping: {
al: 1,
a2: 6,
next mode: 3,
prev mode: 4}
pair cameras: [camera2] # The
visible: True
visible size: 0.005

0.0, A: O.
{L:{P: O.
{AAP:

z: 0},
y: 0}}

cameras paired with this IID-SDE pair

Training Puzzles

Simple and familiar
Easy to understand

Requires using all methods of
Manipulation

Training Puzzles

Data Collection for User Study 3

Console T Python Data
collection script

record poses of

all 4 arms with

- “START" time stamps. “STOP” .ba g
e \When finished, file
write data to be
Console 2 accessed later.

Data Collection for User Study

3 Main metrics: e s —
e Total Path Length BB e

e Controller orientation from std msgs.msg import Float64

e Path smoothness

Plan for testing: defralken(y:
pub = rospy.Publisher('chatterl’, Floaté64,

rospy.init _node('talker’, =True)

create simple ROS
publishers to publish poses
in place of dVRK consoles.

rate = rospy.Rate(10) # 10hz

while not rospy.is shutdown():
data = [tx, ty, tz, qw, gx, qy, qz]
rospy.loginfo(data)
pub.publish(data)
rate.sleep()

Future Work

Before completion of final report:
e Finish testing data collection script that can be used alongside our collateral
control system in a user study.

e Complete documentation
After this semester:
e GCet hands on experience with dvrks to fine tune dual control systems
e Conduct user study for collateral control effectiveness in training
Lessons Learned:

e Learnto use tools (Blender) sooner in order to build proficiency and be able to
develop project more fully
e Maintain regular meetings to help advance project beyond initial expectations

11

Current State

Deliverables:

Minimum

Implementation of a dual console/shared control with
dVRK system and AMBF simulator, 5-6 puzzles to be
used in study, design user study and collect mock
data

Expected
Dual console/shared control, puzzles, data acquisition
script, and conduct user study with actual subjects

Maximum
All of the above along with writing a paper on results
of user study

Work distribution:

Dual Control Implementation:
Joao Kawase and Bryan
Birthwright

Training Puzzles: Joao Kawase
Data Collection Script: Bryan
Birthwright

12

CREDITS

Special Thanks to Dr. Munawar for offering this

oroject and for helping us with everything we
needed

13

Thank You

Any questions?

T—

14

