

Mobile Telesurgery Platform in Mixed Reality – Final Checkpoint

Student: Guanhao(Dean) Fu Mentor: Peter Kazanzides, Ehsan Azimi

Grand Goal

- Lower cost
- Sterile bedside operation(solo)
- Mobile

Novel Surgeon Console!

Non-sterile, stationary

Sterile, mobile

https://ciis.lcsr.jhu.edu/lib/exe/fetch.php?media=courses:456:2020:cis_ii_mobile_telesurgery.pptx

Project Goal

- Design a wearable system that
 - Captures surgeon's arm motion in 3/4DOF at tool (palm)
 - Can control state-of-the-art robot in virtual context (Unity, Rviz, etc.)
 - Has high precision in position control of the slave robot
 - Has a similar workspace as the Da Vinci's MTM
 - Rules of engagement

Deliverables – revised

- Minimum Deliverable:
 - Joint measuring system that captures full motion of <u>single</u> human arm (3/4 DOF at tool), virtual demo in Unity
- Expected Deliverable:
 - Virtual demo of pos/orientation of the tool in virtual workspace, w/ rules of engagement working
- Maximum Deliverable:
 - Achieve wrist 3DOF using 2 IMUs from wrist to dorsal side of hand.

Milestones Progress

Milestones	Complete Date	Overall Status
Design Solution Decision Made	3/15/2020	Completed
Algorithm Implemented	4/5/2020	Completed
Calibration protocols validated	4/10/2020	Completed
Kinematic Measurement Validated	4/16/2020	Minimum Deliverable
Successful Virtual Demo	4/26/2020	Expected Deliverable
6 DOF w/ extra IMU Implemented	4/28/2020	Maximum Deliverable
Complete Documentation	5/4/2020	

Project Progress

- Minimum Deliverable met
- Calibration protocol: orientation protocol completed, link length waiting for debug
- Rules of engagement: work in progress
- Still possible of reaching maximum deliverable if above is resolved soon

Expected Result

- 2~3 Demonstration Videos
 - 1 for minimum deliverable UR5 demonstration of joint angle tracking in real time
 - 1 for expected deliverable end effector demonstration in a virtual workspace
 - 1 for maximum deliverable of wrist 2DOF motion

Major difficulties

- IMU was delivered 1 week later than expected company messed up the address
- IMU was having connection issue in Unity, just resolved on 4/29/20
- IMU library support in Unity
 - No clear documentation of Unity library from LP-RESEARCH
 - Rely on Customer support from LP-RESEARCH to assist

Updated Timeline

		1		Feb 10, 2	2020	Feb 17, 2	2020	Feb 24,	2020	Mar 2	, 2020	Ma	r 9, 2020	ŗ	Mar 16, 2	020	Mar 2	3, 2020	Mar	30, 202	0	Apr 6, 20	020	Apr 13,	2020	Apr 2	0, 2020	Ap	or 27, 20	20	May 4	4, 2020
	PRO 00500	OTADT	7410	10 11 12 13	3 14 15 16	5 17 18 19 20	0 21 22 23	24 25 26 2	27 28 29 1	2 3 4	567	8 9 10	11 12 13	14 15 16	17 18 19	20 21 22	23 24 2	26 27 28	29 30 31	123	4 5 6	789	10 11 12	13 14 15	16 17 18 1	20 21 2	2 23 24 25	26 27 2	8 29 30	123	456	78
IASK	PROGRESS	START	END		F 5 5		+ 5 5	M 1 W	1 + 5 5		I F S	5 M I	WIF	5 5 M		- 5 5	MIV	1 - 5	5 10 1	WIF	5 5 M		F 5 5	M 1 W	1 - 5 - 5		V I F S	5 14				
Dependencies and design solution																																
Resolve Dependencies	100%	2/10/20	3/31/20																													
Brainstorm and Discuss Technical Solution	100%	2/10/20	2/27/20																													
Decide on which approach to proceed	100%	2/27/20	3/15/20																													
Algorithm implementation																																
Decide and order IMU	100%	3/12/20	3/25/20																													
Kinematic algorithm implementation	100%	3/19/20	4/5/20																													
Sensor fusion algorithm implementation	100%	3/19/20	4/5/20																													
Rules of engagement defined	50 <mark>%</mark>	3/19/20	4/5/20																													
Calibration protocol defined	100%	4/5/20	4/11/20																													
Testing and Validation																																
Test end effector position in Unity	90%	4/11/20	5/3/20																													
Debug and physical demo of system	50%	4/28/20	5/3/20																													
Document all codes	0%	5/2/20	5/4/20																													
Report and poster writing	0%	5/3/20	5/4/20																													

Reading List

- 1. P. Kazanzides, E. Azimi, Intuitive Surgical Technology Research Grant Proposal
- 2. Surgical Asepsis and the Principles of Sterile Technique, https://opentextbc.ca/clinicalskills/chapter/surgical-asepsis/
- 3. L. Qian, A. Deguet, Z. Wang, Y. Liu and P. Kazanzides, "Augmented Reality Assisted Instrument Insertion and Tool Manipulation for the First Assistant in Robotic Surgery," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 5173-5179.
- 4. Sabatini AM. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors (Basel). 2011;11(2):1489–1525. doi:10.3390/s110201489
- 5. Determine Orientation Using Inertial Sensors, MATLAB, https://www.mathworks.com/help/fusion/gs/determine-orientation-through-sensor-fusion.html
- 6. Jarrassé, N., & Morel, G. (2011). On the kinematic design of exoskeletons and their fixations with a human member. Robotics: Science and Systems, 6, 113–120. https://doi.org/10.7551/mitpress/9123.003.0019
- 7. D-H https://robotacademy.net.au/lesson/denavit-hartenberg-notation/
- 8. D-H http://www.aeromech.usyd.edu.au/MTRX4700/Course_Documents/material/lectures/L2_Kinematics_Dynamics_2013.pdf
- 9. IMU https://stanford.edu/class/ee267/lectures/lecture9.pdf
- 10. EI-Gohary, M., & McNames, J. (2012). Shoulder and elbow joint angle tracking with inertial sensors. IEEE Transactions on Biomedical Engineering, 59(9), 2635–2641. https://doi.org/10.1109/TBME.2012.2208750
- 11. Naidu, D., Stopforth, R., Bright, G., & Davrajh, S. (2011). A 7 DOF exoskeleton arm: Shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals. IEEE AFRICON Conference, (September), 1–6. https://doi.org/10.1109/AFRCON.2011.6072065
- 12. Wong, C., Zhang, Z. Q., Lo, B., & Yang, G. Z. (2015). Wearable Sensing for Solid Biomechanics: A Review. IEEE Sensors Journal, 15(5), 2747–2760. https://doi.org/10.1109/JSEN.2015.2393883
- Lopez-Nava, I. H., & Angelica, M. M. (2016). Wearable Inertial Sensors for Human Motion Analysis: A review. IEEE Sensors Journal, PP(99), 7821–7834. https://doi.org/10.1109/JSEN.2016.2609392
- 14. Steidle, F., Tobergte, A., & Albu-Schäffer, A. (2016). Optical-inertial tracking of an input device for real-time robot control. Proceedings IEEE International Conference on Robotics and Automation, 2016-June, 742–749. https://doi.org/10.1109/ICRA.2016.7487202
- 15. Kim, Y., Leonard, S., Shademan, A., Krieger, A., & Kim, P. C. W. (2014). Kinect technology for hand tracking control of surgical robots: Technical and surgical skill comparison to current robotic masters. Surgical Endoscopy, 28(6), 1993–2000. https://doi.org/10.1007/s00464-013-3383-8
- 16. Tobergte, A., Pomarlan, M., Passig, G., & Hirzinger, G. (2011). An approach to ulta-tightly coupled data fusion for handheld input devices in robotic surgery. Proceedings -IEEE International Conference on Robotics and Automation, 2424–2430. https://doi.org/10.1109/ICRA.2011.5980120
- 17. Taunyazov, T., Omarali, B., & Shintemirov, A. (2016). A novel low-cost 4-DOF wireless human arm motion tracker. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2016-July, 157–162. https://doi.org/10.1109/BIOROB.2016.7523615

Updated Dependencies

Dependency	Solutions	Deadline	Backup Plan	Affect what	Status
IMU connection	Contact LP-RESEARCH	4/30	None	System validation and testing	Completed
IMU Unity support	Contact LP-RESEARCH	4/30	None	System validation and testing	Completed
Algorithm Implementation	Unity on personal PC	3/25	Contact mentors to use lab machines	System realization	Completed
Parts Delivered	Contact Dr. Kazanzides	3/31	None	System realization	Completed

