

Mobile Telesurgery Platform in mixed-reality

Student: Guanhao(Dean) Fu Mentor: Peter Kazanzides, Ehsan Azimi

Background

- Need a 2nd sterile surgeon by the bedside
- Instrument sales are the biggest source of revenue (NOT surgeon console). [1]
- Impossible to perform Solo Surgery

https://www.researchgate.net/figure/Da-Vinci-robotic-systems-have-three-major -components-the-surgeon-console-the-surgical fig1 281377370

Background

- HMD (Head-Mounted Display)
- In place of stereo endoscope on the surgeon console

[3]: L. Qian et al., 2019

Grand Goal

- Lower cost
- Sterile bedside operation(solo)
- Mobile

Novel Surgeon Console!

Non-sterile, stationary

Sterile, mobile

https://ciis.lcsr.jhu.edu/lib/exe/fetch.php?media=courses:456:2020:cis_ii_mobile_telesurgery.pptx

Project Goal

- Design a wearable system that
 - Captures surgeon's arm motion in 3DOF
 - Can control state-of-the-art robot such as UR3 or dVRK
 - Has high precision in position control of the slave robot
 - Has a similar workspace as the Da Vinci's MTM
 - Has a way to recognize surgeon's intention to engage/disengage with the system

Technical Approach

IMU

Pros:

- Easy attachment
- Not Bulky

Cons:

• IMU Drift

(human-in-the-loop operation may neglect this point)

Readings: [4], [5], [10], [11]

IMU

Technical Approach by steps

- 1. Develop kinematics algorithm to compute accurate joint angles of surgeons of different arm dimensions
- 2. Develop sensor fusion algorithm (if needed) for the IMU ordered
- 3. Define rules of engagement protocol
- 4. Implement all algorithms in ROS
- 5. Define calibration protocols to accommodate different surgeons' arm dimensions
- 6. Control UR3/dVRK using the system and debug all algorithms

Technical Details

- IMU Type: Adafruit, Lp-research
- IMU Interface: I2C, bluetooth
- Algorithm: EKF, kinematics
- Calibration: Establish calibration pose and protocols (hand-eye calibration)
- Algorithm assumption: surgeon's torso stays perpendicular to the ground

Deliverables

- Minimum Deliverable:
 - Joint measuring system that captures full motion of <u>single</u> human arm (3/4 DOF), virtual demo in

Rviz

- Expected Deliverable:
 - Physical demo of Teleoperation using UR3/dVRK, with rules of engagement clearly working
- Maximum Deliverable:
 - Achieve 6 DOF motion capture of human arm

Dependencies

Dependency	Solutions	Deadline	Backup Plan	Affect what	Status	
Lab Access	Contact Dr. Kazanzides to sign paperwork	2/15	Ask mentors to open doors to the lab when needed	UR3 and dVRK Access	Completed	
Software License	Use WSE Solidworks license	2/11	Use older version on my personal PC	Whole project	Completed	
UR3 Access	Contact Dr. Kazanzides	3/15	Use dVRK	System validation and testing	Completed	
dVRK Access	Contact Anton	3/15	N/A	System validation and testing	Not started	
Algorithm Implementation	ROS on personal PC	3/25	Contact mentors to use lab machines	System realization	Completed	
Parts Delivered	Contact Dr. Kazanzides	3/31	None	System realization	Not Started	

Timeline

		1		Feb 10, 2020	Feb 17, 2020	Feb 24, 2020	Mar 2, 2020	Mar 9, 2020	Mar 16, 2020	Mar 23, 2020	Mar 30, 2020	Apr 6, 2020	Apr 13, 2020	Apr 20, 2020	Apr 27, 2020	May 4, 2	2020
				10 11 12 13 14 15	16 17 18 19 20 21 22 2	3 24 25 26 27 28 29	1234567	8 9 10 11 12 13 14 15	5 16 17 18 19 20 21 2	2 23 24 25 26 27 28 2	930311234	5 6 7 8 9 10 11	12 13 14 15 16 17 18	19 20 21 22 23 24 25	26 27 28 29 30 1 2	3 4 5 6 7	7 8 9 10
TASK	PROGRESS	START	END	M T W T F S				SMTWTFSS									T F S S
Dependencies and design solution																	
Resolve Dependencies	90%	2/10/20 3	8/15/20														
Brainstorm and Discuss Technical Solutic	100%	2/10/20 2	2/27/20														
Decide on which approach to proceed	100%	2/27/20 3	8/15/20														
Algorithm implementation																	
Decide and order IMU	50%	3/12/20 3	8/25/20														
Kinematic algorithm implementation	0%	3/19/20	4/5/20														
Sensor fusion algorithm implementation	0%	3/19/20	4/5/20														
Rules of engagement defined	0%	3/19/20	4/5/20														
Calibration protocol defined	0%	4/5/20 4	4/11/20														
Testing and Validation																	
Test end effector position in Rviz	0%	4/11/20 4	4/16/20														
Control UR3/dVRK	0%	4/17/20 4	4/21/20														
Debug and physical demo of system	0%	4/22/20 4	/26/20														
Document all codes	0%	4/27/20 4	4/29/20														
Report and poster writing	0%	4/29/20	5/4/20														

Key Dates/Milestones

Milestones	Complete Date	Overall Status
Design Solution Decision Made	3/15/2020	Completed
Algorithm Implemented	4/5/2020	
Kinematic Measurement Validated	4/10/2020	Minimum Deliverable
Calibration protocols validated	4/16/2020	
Successful Physical Demo	4/26/2020	Expected Deliverable
6 DOF w/ extra IMU Implemented	4/28/2020	Maximum Deliverable
Complete Documentation	5/4/2020	

Management Plan

- Meetings: Bi-weekly meeting with mentors
- Budget: ~\$500

Reading List

- 1. P. Kazanzides, E. Azimi, Intuitive Surgical Technology Research Grant Proposal
- 2. Surgical Asepsis and the Principles of Sterile Technique, https://opentextbc.ca/clinicalskills/chapter/surgical-asepsis/
- 3. L. Qian, A. Deguet, Z. Wang, Y. Liu and P. Kazanzides, "Augmented Reality Assisted Instrument Insertion and Tool Manipulation for the First Assistant in Robotic Surgery," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 5173-5179.
- 4. Sabatini AM. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors (Basel). 2011;11(2):1489–1525. doi:10.3390/s110201489
- 5. Determine Orientation Using Inertial Sensors, MATLAB, https://www.mathworks.com/help/fusion/gs/determine-orientation-through-sensor-fusion.html
- 6. Jarrassé, N., & Morel, G. (2011). On the kinematic design of exoskeletons and their fixations with a human member. Robotics: Science and Systems, 6, 113–120. https://doi.org/10.7551/mitpress/9123.003.0019
- 7. D-H https://robotacademy.net.au/lesson/denavit-hartenberg-notation/
- 8. D-H http://www.aeromech.usvd.edu.au/MTRX4700/Course Documents/material/lectures/L2 Kinematics Dynamics 2013.pdf
- 9. IMU https://stanford.edu/class/ee267/lectures/lecture9.pdf
- 10. El-Gohary, M., & McNames, J. (2012). Shoulder and elbow joint angle tracking with inertial sensors. IEEE Transactions on Biomedical Engineering, 59(9), 2635–2641. https://doi.org/10.1109/TBME.2012.2208750
- 11. Naidu, D., Stopforth, R., Bright, G., & Davrajh, S. (2011). A 7 DOF exoskeleton arm: Shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals. IEEE AFRICON Conference, (September), 1–6. https://doi.org/10.1109/AFRCON.2011.6072065
- 12. Wong, C., Zhang, Z. Q., Lo, B., & Yang, G. Z. (2015). Wearable Sensing for Solid Biomechanics: A Review. IEEE Sensors Journal, 15(5), 2747–2760. https://doi.org/10.1109/JSEN.2015.2393883
- 13. Lopez-Nava, I. H., & Angelica, M. M. (2016). Wearable Inertial Sensors for Human Motion Analysis: A review. IEEE Sensors Journal, PP(99), 7821–7834. https://doi.org/10.1109/JSEN.2016.2609392
- 14. Steidle, F., Tobergte, A., & Albu-Schäffer, A. (2016). Optical-inertial tracking of an input device for real-time robot control. Proceedings IEEE International Conference on Robotics and Automation, 2016-June, 742–749. https://doi.org/10.1109/ICRA.2016.7487202
- 15. Kim, Y., Leonard, S., Shademan, A., Krieger, A., & Kim, P. C. W. (2014). Kinect technology for hand tracking control of surgical robots: Technical and surgical skill comparison to current robotic masters. Surgical Endoscopy, 28(6), 1993–2000. https://doi.org/10.1007/s00464-013-3383-8
- 16. Tobergte, A., Pomarlan, M., Passig, G., & Hirzinger, G. (2011). An approach to ulta-tightly coupled data fusion for handheld input devices in robotic surgery. Proceedings -IEEE International Conference on Robotics and Automation, 2424–2430. https://doi.org/10.1109/ICRA.2011.5980120

Backup slides: User Study

- IRB (Existing IRB by Dr. Kazanzides will cover this project)
 - Assisted Teleoperation generic
 - Complete Online training
 - Send the certificate to Dr. Kazanzides
- Design user study
 - Experimental platform(task)
 - Analysis

