

Our Project: Key Points

Our Project: Key Points

[1]

White, Tim et al. "Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report." Cureus vol. 9,2 e1012. 4 Feb. 2017, doi:10.7759/cureus.1012

[2]

Marcus HJ, Zareinia K, Gan LS, Yang FW, Lama S, Yang GZ, Sutherland GR. "Forces exerted during microneurosurgery: a cadaver study." Int J Med Robot. 2014 Jun;10(2):251-6. doi: 10.1002/rcs.1568. Epub 2014 Jan 16. PMID: 24431265; PMCID: PMC4377085.

[3]

Janota A, Šimák V, Nemec D, Hrbček J. Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data. Sensors. 2015; 15(3):7016-7039. https://doi.org/10.3390/s150307016

1. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

Selected

- Outlines use case for our project.
- Highlights current successes and pitfalls of the procedure.

Summary

- Defines efficient surgical workflow making use of neuronavigation, surgical microscope, and tubular retractor.
- Significant for defining future of this procedure.

1. Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device

Experiment

- Performed 3 cases of deep lesion resection
- Combined VBAS, neuronavigation, and microsurgery to allow for accurate approach with minimal tissue disturbance

Results

 Cases performed successfully with no complications and no post-procedure neurological symptoms

Surgical Setup. [1] White et al.

1. Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device

Key Information Gathered

- Minimize time spent away from the surgical microscope
- Tubular retractor mobility aids resection
- Maneuverability of longer retractors is limited

1. Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device

In my opinion - Good

- Provides detailed workflow
- Comprehensive overview of benefits of technology

In my opinion - Needs Improvement

- Quantifying the improvements to the procedure
- More data

2. Forces exerted during microneurosurgery: a cadaver study.

Selected

Provides guidelines for minimizing parenchymal damage.

Summary

- Performed common microneurosurgical procedures and tested resulting force to brain
- Significant for identifying forces leading to injury.

2. Forces exerted during microneurosurgery: a cadaver study

Experiment

- Performed incision and retraction maneuvers using force/torque sensor fitted onto 6 DOF robot arm.
- Determined average force of procedure, average force of injury

Results

- Average force to retract brain tissue 5mm(0.08N) was greater than the force of either stab incision(0.01N) or carrying incision(0.05N)
- Force exerted during sharp and blunt dissection were significantly different (0.03N compared to 0.22N)

Experimental Setup. [2] Marcus et al.

2. Forces exerted during microneurosurgery: a cadaver study

Key Information Gathered

- Retraction requires more force than other maneuvers
- Blunt dissection requires more force than other maneuvers

Table 1. The median (interquartile range) of forces exerted (Newton) when performing simple procedures in different brain regions

		Median (interquartile range)		
		Stab Incision	Carrying Incision	Retraction
Cerebrum (n = 24)	Gyrus rectus (n = 8)	<0.01 (0.00 – 0.03)	0.02 (0.01 – 0.03)	0.03 (0.03 – 0.05)
	Inferior temporal gyrus (n = 8) Middle frontal gyrus (n = 8)	<0.01 (0.00 – 0.01) <0.01 (0.00 – 0.01)	0.02 (0.00 – 0.03) 0.15 (0.12 – 0.18)	0.07 (0.06 – 0.09) 0.08 (0.06 – 0.10)
Cerebellum (n = 12)	Cerebellar hemisphere $(n = 8)$	0.01(0.00-0.01)	0.03 (0.02 - 0.04)	0.08 (0.02 - 0.13)
	Cerebellar vermis (n = 4)	0.02 (0.01 - 0.02)	0.12 (0.12 - 0.12)	N.A.
Brainstem $(n = 22)$	Midbrain $(n = 6)$	0.01 (0.00 - 0.01)	0.11(0.04 - 0.26)	0.15(0.13 - 0.20)
	Pons $(n = 8)$	<0.01 (0.00 – 0.01)	0.05 (0.04 - 0.06)	0.18 (0.12 - 0.21)
	Medulla $(n = 8)$	0.01 (0.01 - 0.03)	0.09(0.06 - 0.16)	0.09(0.06 - 0.11)
Other $(n = 8)$	Corpus callosum $(n = 4)$	0.01 (0.00 - 0.03)	0.23(0.09 - 0.43)	N.A.
	Perforating floor of third ventricle $(n = 4)$	<0.01 (0.00 – 0.01)	N.A.	N.A.

2. Forces exerted during microneurosurgery: a cadaver study

In my opinion - Good

- Identifying different types of forces
- Testing different regions of the brain

In my Opinion - Needs Improvement

- Integrity of specimen
- Identifying specific thresholds of injury

3 Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data

Selected

Provides optimal way to deal with IMU data.

Summary

- Authors tested sample motion data by interpreting gyroscope angular velocity values into rotation matrices, quaternions, and euler angles.
- Significant in providing best case representation given computing power and sampling frequency.

2. Improving the Precision and Speed of Euler Angles Computation

Experiment

- Created 120 s of simulated motion data
- Interpreted angular velocity into euler angles, rotation matrices, and quaternions
 - Calculated both quaternions and rotation matrices using precise and fast methodology
- Interpreted error

Algorithm. [3] Janota et al.

3. Improving the Precision and Speed of Euler Angles Computation

Results & Key Information

Table 1. Comparison of methods in terms of 8-bit AVR processor clock cycles.

Algorithm	Updating of the Rotational Matrix	Integration of the Euler Angle Rates	Updating of the Quaternion	
Redundancy (count of variables)	**9	****3	***4	
Gyroscope data processing (rotation update)	*** + 17,230 (6034 +)	***14,750	****11,462 (5120 +)	
Normalization	**12,265	*****0	****1972	
Vector transformation	****2301	*15,231 ³)	***4321	
Transformation to the rotational matrix	****0	**12,930	****3536	
Transformation to Euler angles	****7820	****0	***10,673	
Transformation to quaternion	***3370	**13,020	****0	
Clock cycles for the gyroscope-only system ¹)	37,315 (26,119 +)	14,750	24,107 (17,765 +)	
Clock cycles for the compensated system ²)	40,281 (29,085 +)	29,981 ³)	39,476 (33,134 +)	

Table 3. Accuracy of the algorithms.

Maximal Error of the Algorithm during 120 s of Simulated Movement					
Matrix-Based Algorithm		Integration of Euler Angle Rates	Quaternion-Based Algorithm		
Fast	Precise	Step Integration	Fast	Precise	
>180°	8°	>180°	30°	8°	
4°	1°	>180°	1°	1°	
1°	0.6°	>180°	0.6°	0.6°	
0.1°	0.1°	8°	0.1°	0.1°	
0.06°	0.06°	4°	0.06°	0.06°	
	Fast >180° 4° 1° 0.1°	Matrix-Based Algorithm Fast Precise >180° 8° 4° 1° 1° 0.6° 0.1° 0.1°	Matrix-Based Algorithm Integration of Euler Angle Rates Fast Precise Step Integration >180° 8° >180° 4° 1° >180° 1° 0.6° >180° 0.1° 0.1° 8°	Fast Precise Step Integration Fast >180° 8° >180° 30° 4° 1° >180° 1° 1° 0.6° >180° 0.6° 0.1° 0.1° 8° 0.1°	

Results. [3] Janota et al.

3. Improving the Precision and Speed of Euler Angles Computation

In my opinion - Good

- Concise
- Clear illustration of pros and cons of each method
- Robust sampling frequency

In my opinion - Needs Improvement

Model specifications

References

White, Tim et al. "Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report." *Cureus* vol. 9,2 e1012. 4 Feb. 2017, doi:10.7759/cureus.1012

Marcus HJ, Zareinia K, Gan LS, Yang FW, Lama S, Yang GZ, Sutherland GR. "Forces exerted during microneurosurgery: a cadaver study." Int J Med Robot. 2014 Jun;10(2):251-6. doi: 10.1002/rcs.1568. Epub 2014 Jan 16. PMID: 24431265; PMCID: PMC4377085.

Janota A, Šimák V, Nemec D, Hrbček J. Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data. *Sensors*. 2015; 15(3):7016-7039. https://doi.org/10.3390/s150307016

Supplemental References

Spetzler et al. The quiet revolution: retractorless surgery for complex vascular and skull base lesions. Journal of Neurosurgery. 116:291-300, 2012

Questions & Feedback