Motorized Fixation to Tubular Retractor in Brain Surgery

Group 1: Caroline Hoerrner, Robby Waxman, Mark Shifman

Advisors: Dr. Axel Krieger, Dr. Mohammed Fouda, Dr. Alan Cohen

600.456 CIS II Spring 2021

Clinical Motivations

Problem: Surgical site accessibility in microneurosurgery.

- Tubular retractors reduce secondary trauma, allow for maximum visibility¹.
- Tubular retractor designs have limited maneuverability in deep intracranial sites¹.
- Blunt dissection force as small as 0.4 N can lead to injury².

Goal: Improve the tubular retractor repositioning process to minimize extraneous forces exerted on brain tissue and improve usability.

- 1. Shapiro et al. (2020)
- 2. Marcus et al. (2014)

Speltzer et al. (2012)

White et al. (2017)

Solution

Method: Add **motorized fixation** to retractor, allowing for smooth and **precise** movements.

Create **intuitive** motion control system for

surgeons.

Surgeons

synchronously

realign

retractor to

same

orientation

with a

Computer Aided Design (CAD) of Physical Attachment

- 2 DoF provided by servos (pitch & roll)
- Inner platform holds the tubular retractor
- 2-Axis gimbal

9 DoF Inertial Measurement Unit (IMU)

- 3 DoF Magnetometer
- 3 DoF Accelerometer
- 3 DoF Gyroscope
- Measures Orientation

CAD of Calibration Tool

- IMU is stored in the "POD"
- Surgeon holds tool by the "ROD" like a typical surgical instrument

When a surgeon wants to realign the retractor, the button is held, and the relative angle the tool is moved is matched by the attachment

Challenges

IMU Accuracy

Filter	Axis	Average Absolute Deviation (degrees)
Mahony	X	0.1063
	Y	0.0064
	Z	0.0246

Motor Accuracy

Input Correction

 $f(x) = 0.868 x + 0.0008 x^2 - 4.38$

f(y) = 1.013 y - 17.06

Overall Error

1.46 degrees

2.41 degrees

Motorized Fixation to Tubular Retractor in Brain Surgery

Assessment

Overall Accuracy:

Axis	Mean Absolute Error (Degrees)
X-Axis (Outer Servo)	3.50211
Y-Axis (Inner Servo)	2.17714

Usability Trials:

Participants were asked to trace a circle using the calibration tool. During the trial, certain points were sampled and the distance from the circle was calculated.

RMS error over all participants: 2.667 ± 1.656 mm

Motorized Fixation to Tubular Retractor in Brain Surgery

Next Steps

<u>Update Physical Attachment</u>

New CAD of Physical Attachment designed for manufacturability and compactness to fit into surgical field, and transition to DC motors for smoother control

Continuation of Project

The full private code base with documentation will be handed over to our corporate sponsors, CortiTech, which Mark is a part of.

The immediate next steps include implementing and testing the updated physical attachment (left), refining and testing force limiting features, benchtop & animal testing, and gathering additional surgeon feedback

Motorized Fixation to Tubular Retractor in Brain Surgery

Questions

References

- [1] Shapiro, Stephen et al. "Use of Vycor Tubular Retractors in the Management of Deep Brain Lesions: A Review of Current Studies," World Neurosurgery, Volume 133, 2020, Pages 283-290, ISSN 1878-8750
- [2] Marcus HJ, Zareinia K, Gan LS, Yang FW, Lama S, Yang GZ, Sutherland GR. "Forces exerted during microneurosurgery: a cadaver study." Int J Med Robot. 2014 Jun;10(2):251-6. doi: 10.1002/rcs.1568. Epub 2014 Jan 16. PMID: 24431265; PMCID: PMC4377085
- [3] "ViewSite Brain Access System (VBAS)." VBAS, www.vycorvbas.com/products/
- [4] "Products." NICO Corporation, www.niconeuro.com/nico-product-line/.
- [5] Eichberg DG, Buttrick SS, Sharaf JM, et al. Use of tubular retractor for resection of colloid cysts; single surgeon experience and review of the literature. Operative Neurosurgery. 2019;16(5):571-579.
- [6] Yoo, Sun Jay, et al. "The Design and Use of a Minimally Invasive, Expandable Retractor for Deep-Seated Brain Lesions." Proceedings of the 2021 Design of Medical Devices Conference.
- [7] Eichberg, Daniel G., et al. "Use of Tubular Retractor for Resection of Deep-Seated Cerebral Tumors and Colloid Cysts: Single Surgeon Experience and Review of the Literature." World Neurosurgery, Elsevier, 15 Dec. 2017, www.sciencedirect.com/science/article/abs/pii/S1878875017321393.
- [8] "Embracing New Technologies to Save Lives." Weill Cornell Brain and Spine Center, 22 July 2019, weillcornellbrainandspine.org/embracing-new-technologies-to-save-lives.
- [9] Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD. "Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises. Cancer Control." 2015 Jul;22(3):352-9. doi: 10.1177/107327481502200314. PMID: 26351892.
- [10] R. Mahony, T. Hamel and J. Pflimlin, "Nonlinear Complementary Filters on the Special Orthogonal Group," in IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203-1218, June 2008, doi: 10.1109/TAC.2008.923738
- [11] S. O. H. Madgwick, A. J. L. Harrison and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 2011, pp. 1-7, doi: 10.1109/ICORR.2011.5975346.
- [12] Williams, Irish. "Readings." Principles of Oceanographic Instrument Systems -- Sensors and Measurements (13.998) | Mechanical Engineering | MIT OpenCourseWare
- ocw.mit.edu/courses/mechanical-engineering/2-693-principles-of-oceanographic-instrument-systems-sensors-and-measurements-13-998-spring-2004/re adings, Accessed 4 May 2021.

Appendix

Attachment to Leyla Arm, a currently used retractor system

Fixation with a retractor in place through which the surgeon inserts an instrument

Calibration object augmented design. Left to right: iterations

Motorized Fixation to Tubular Retractor in Brain Surgery

