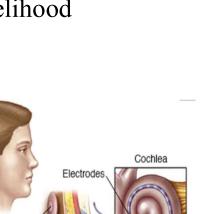
Force-Sensing Forceps for Cochlear Implant Surgery

Group 02: Justin Kim


kkim141@jhu.edu

3/25/2021

Principal Investigator: Prof. Russ Taylor Primary Mentor: Anna Goodridge Surgeon Mentor: Dr. Deepa Galaiya Secondary Mentor: Prof. Iulian Iordachita

Project Summary

- Problem
 - Electrode insertion during cochlear implant surgery has a high likelihood (17.6%) for trauma (Hoskison, 2017)
 - Below the resolution of surgeon tactile sensation (Seta, 2017)
- Goal
 - Design a 3 DOF force-sensing forceps to assist insertion
- Status
 - Slightly behind

Sonsing + Robotics

ANYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Transmitter

Receiver and stimulator

Transmitte

Microphone and speech processor

Deliverables

Deliverables Date							
Minimum	Final CAD model	23-Mar	80%				
winninum	Report of Finite Element Analysis results	23-Mar	Behind				
	Fabricated prototype with sensors attached	20-Apr					
Expected	Preparation for calibration and test rig	4-May					
	Plan for further tests	4-May					
	Report of calibration data analysis	TBD					
Maximum	More tests under different conditions	TBD					
	Plan for design iteration and future work	TBD					

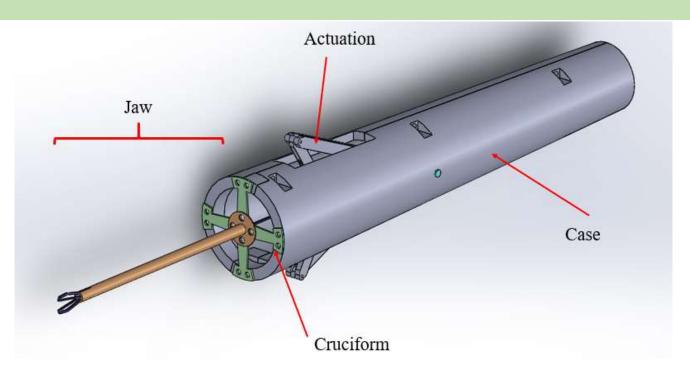
Timeline

			Febr	uary			ſ	Marc	h		April				May				
	Week	1	2	3	4	1	2	3	4	5	1	2	3	4	1	2	3	4	
Literature Review																			
Design																			
Determine actuation mechanism																			
Determine cruciform design																			
Determine jaw geometry																			
Determine sensor locations																			
CAD																			
CAD modeling by part																			
Case Design																			
Full CAD model																			
Finite Element Analysis																			
FEA by part																			
Final FEA Report																			
Iterative Design																			
Prototyping																			
Calibration and test rig preparation																			
Final Report																			

3/25/2021

Dependencies

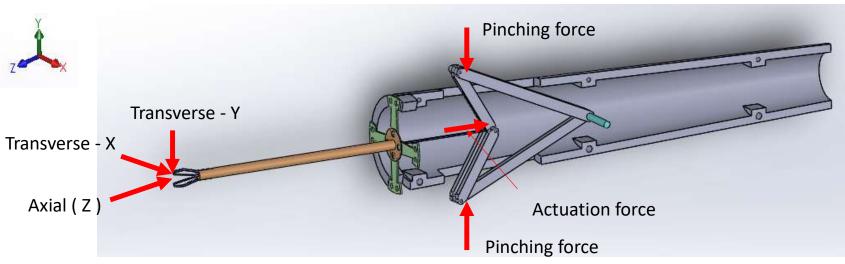
- Major dependency: Prototyping
 - In-house: preferred, may be affected by in-campus activity status
 - Outsourcing: not preferred, wait for quote & build time
 - Budget: Resolving Dr. Galaiya is reviewing budget proposal
- Testing
 - Dr. Galaiya's schedule



Current status & Cause of delay

- Jaw design: 80%
- Cruciform design: 90%
- Actuation design: 90%
- Case design: 70%
- Underestimated the complexity of the design
- Currently, the general design is developed, but needs a lot of editing to produce an actual prototype

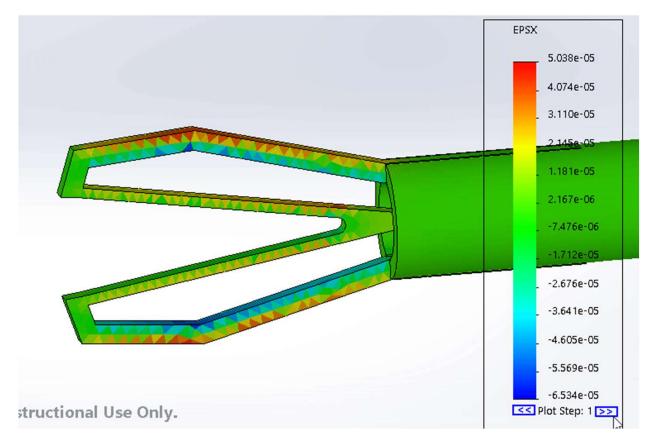
Overview of Design



- Jaw: 2 mm dia, 45 mm length
- Body: 20 mm dia, 100 mm length

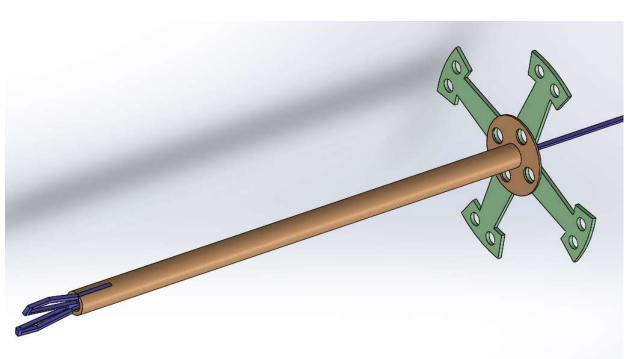
3/25/2021

Terminology



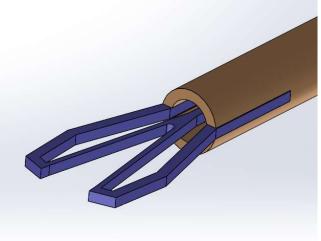
- Finite Element Analysis (FEA)
 - Computer simulation used to predict how a part / assembly behaves physically given some physical parameters

- Ergonomic:
 - Tip width when closed > 12 mm
 - Optimal length: 40 mm



- When fully actuated
 - < 12 mm total width
 - Able to grab 0.5 mm electrode
- Middle segment thinner
 - Guides deformation

3/25/2021

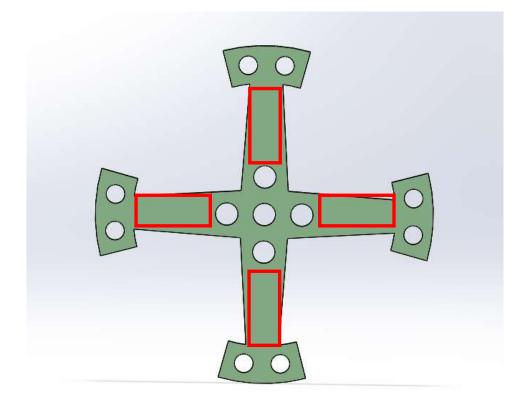

Jaw - 3

- Tube (orange)
 - Adds rigidity
 - Translates transverse force evenly to the cruciform
- Connection to the tube

• Epoxy

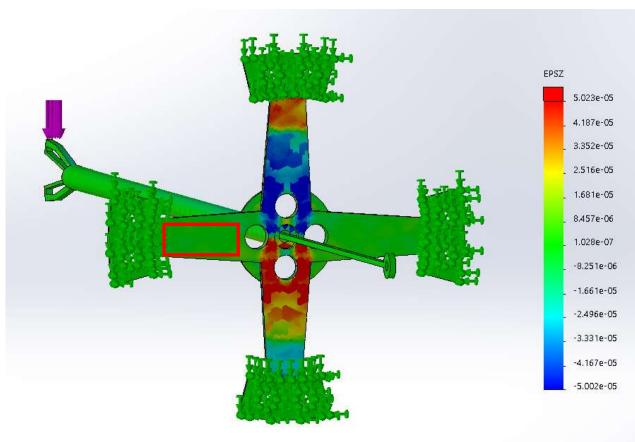
3/25/2021

Jaw – Next Steps



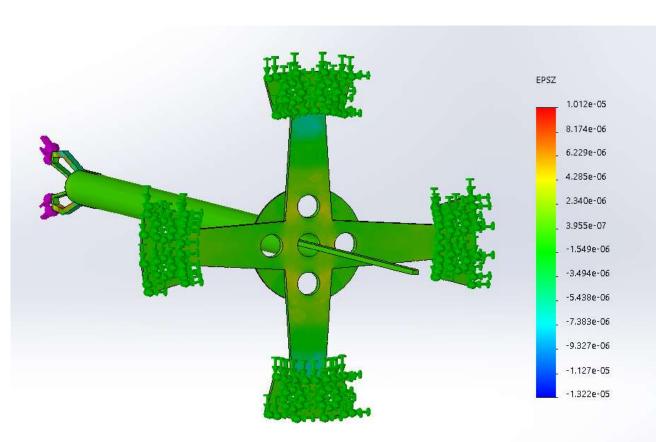
- Too thin to easily prototype
- However, increasing thickness changes:
 - Grasping force
 - Actuation force
- Want to keep an optimal grasping force while minimizing actuation force
- While meeting ergonomics requirement
- Fatigue study

Cruciform



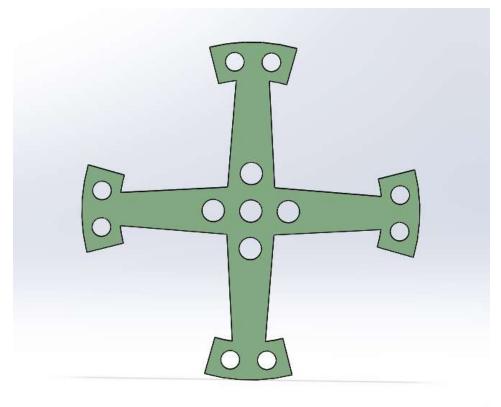
- Force-sensing part
- Red: strain gauge mount
- Ergonomic
 - < 20mm in dimameter

Cruciform – Transverse loading



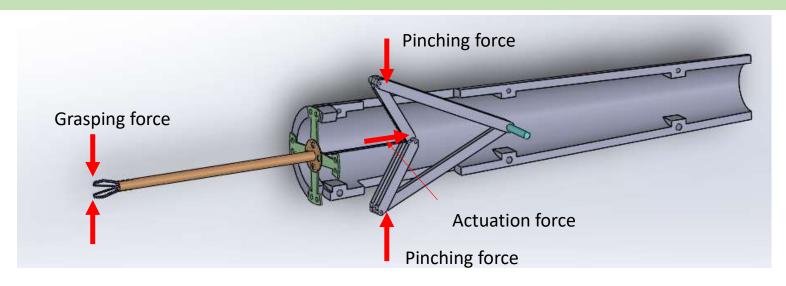
- Minimum strain:
 - 50 um at minimum force (20 um)
- Strain is inconsistent through out
 - Need to find where the active region of the strain gauge lies

Cruciform – Axial loading



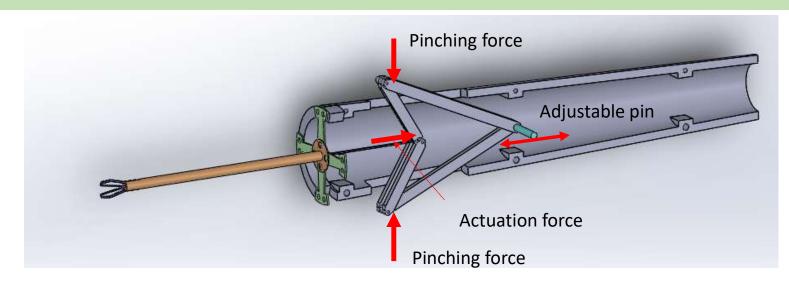
- Not as sensitive in axial
 x 0.1 ~ 0.001
- Need additional feature to detect axial loading

Cruciform – Next Steps



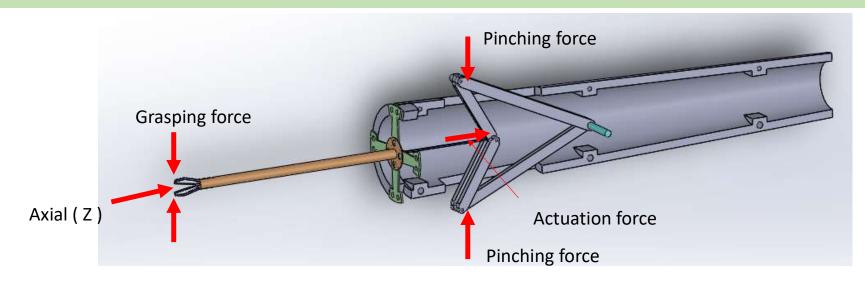
- Check location of active region of strain gauge
- FEA at max load
- Remove connection holes
 - Use epoxy instead

Actuation & Case



• Check location of active region of strain gauge

Actuation & Case



- Axial force and actuation force are in the same direction
 - Need to experimentally observe this behavior (with prototype)
- Teal pin needs to be able to slide & fix to adjust pinching force

Actuation & Case – Next Steps

- Rapid prototype (3D print) to check with Dr. Galaiya
- Pin design
- Sensor wires

Looking ahead - Design

- Jaw design (most amount of work)
 - Need to adjust dimensions
- Cruciform design
 - Need small adjustments
 - Figure out mounting
- Actuation & Case
 - Final adjustment and rapid prototyping
- Extra refinements
- Most likely...1~2 weeks amount of work before prototype begins
 - Will have a meeting with Anna today to make an estimations

3/25/2021

Laboratory for Computations Sensing + Robotics

Looking ahead - Prototyping

- Many parts
 - Different manufacturing methods
 - Different mounting methods
 - Difficult assembly
- Strain gauge placement & wires
- May need 3~4 weeks

Laboratory for Computations Sensing * Robotics

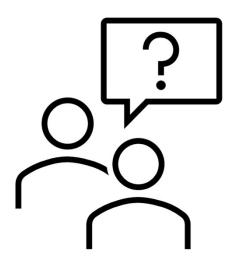
Looking ahead – Revised timeline

	Date	
Minimum	Final CAD model	8-Apr
winninum	Report of Finite Element Analysis results	15-Apr
	Fabricated prototype with sensors attached	4-May
Expected	Preparation for calibration and test rig	TBD
	Plan for further tests	TBD
	Report of calibration data analysis	Summer
Maximum	More tests under different conditions	Summer
	Plan for design iteration and future work	Summer

Management

- General LCSR Lab meeting
 - Weekly on Wednesday
- Meeting with Anna
 - Almost 2 times a week, mostly once a week
- Meeting with Dr. Iordachita
 - For consult
- Meeting with Dr. Galaiya
 - For consult

References



- De Seta D, Torres R, Russo FY, Ferrary E, Kazmitcheff G, Heymann D, Amiaud J, Sterkers O, Bernardeschi D, Nguyen Y. Damage to inner ear structure during cochlear implantation: Correlation between insertion force and radio-histological findings in temporal bone specimens. Hear Res. 2017 Feb;344:90-97. doi: 10.1016/j.heares.2016.11.002. Epub 2016 Nov 5. PMID: 27825860.
- Gao, Anzhu, et al. "3-DOF Force-Sensing Micro-Forceps for Robot-Assisted Membrane Peeling: Intrinsic Actuation Force Modeling." 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, doi:10.1109/biorob.2016.7523674.
- Handa, James, et al. "Design of 3-DOF Force Sensing Micro-Forceps for Robot Assisted Vitreoretinal Surgery." *IEEE Engineering in Medicine and Biology Society*, 2013, doi:10.1109/EMBC.2013.6610841.
- Hoskison E, Mitchell S, Coulson C. Systematic review: Radiological and histological evidence of cochlear implant insertion trauma in adult patients. Cochlear Implants Int. 2017 Jul;18(4):192-197. doi: 10.1080/14670100.2017.1330735. Epub 2017 May 23. PMID: 28534710.
- "Implant Programs Mankato." Mayo Clinic Health System, www.mayoclinichealthsystem.org/locations/mankato/services-andtreatments/audiology/implant-programs.

3/25/2021

Thank you! Questions

