Force-Sensing Forceps for Cochlear Implant Surgery

Laboratory for Computational Sensing + Robotics

Group 02: Justin Kim

kkim141@jhu.edu

2

Project Goal

• Problem

- Electrode insertion during cochlear implant surgery has a high likelihood (17.6%) for trauma (Hoskison, 2017)
- Below the resolution of surgeon tactile sensation (Seta, 2017)

• Goal

• Design a 3 DOF force-sensing forceps to assist insertion

MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED

Design of 3-DOF Force Sensing Micro-Forceps for Robot Assisted Vitreoretinal Surgery

Handa, James, et al. "Design of 3-DOF Force Sensing Micro-Forceps for Robot Assisted Vitreoretinal Surgery." *IEEE Engineering in Medicine and Biology Society*, 2013, doi:10.1109/EMBC.2013.6610841.

• Significance

- Our design is inspired by this design
- Similar setting: measurement of forces in mN
- 3 DOF force sensing ability
- Good outline: design process very similar

• Summary

Paper - Summary

- Design of 3 DOF force sensing forceps for vitreoretinal surgery
- Key Result
 - Complete design with an optimization study
 - Determined:
 - Material
 - Sensor type
 - Sensor location
 - Force sensing ability demonstrated with FEA

Paper - Background

Force measurement

• Target: 7.5 mN

Limited Space

- Jaw length > 14mm (human eyeball 24mm dia)
- Jaw width > 0.9 mm ID (has to pass through a 20 Ga trocar)
- Biocompatibility
 - Tool is introduced into the eye

Paper – Force Sensing

- Sensor selection: FBG sensors
 - Limited space
 - Sub-mN force detection

- 3DOF 4 FBG sensors
 - 3 Lateral
 - 1 Axial
 - Strain caused by axial force on lateral FBGs are minimized by the actuation mechanism and the coupling of tubes with jaws

New 3-DOF

force sensing micro-forceps

Sciera entry point

Handa et al (2013)

Paper - Actuation

- Spring loaded actuation
 - Actuation: relative motion of two concentric tubes
 - Sliding motion by moving the actuation ring
 - Advantage: adjustable pre-tension for controlling grasping force
- Normally closed vs. Normally open
 - Forces of interest are introduced after grasping
 - Advantageous to have 0 strain when closed

Paper - Optimization

- Goal: maximum sensitivity while decoupling axial-transverse force
 - Minimize actuation force
 - Maximize sensitivity
 - Maintain grasping force > 20 mN
 - Within resolution of laser cutting limits
 - Lifetime of the jaws
- Material: nitinol
 - super-elastic properties with a sheet thickness of 0.4 mm

Paper - Simulation

- FEA
 - Parameters
 - Arm Thickness
 - Jaw Length
 - Jaw Width
 - Calculate
 - Actuation Force
- Fatigue
 - 60,000 cycles of actuation force

Paper – Good and Bad

- Force sensing
 - Good
 - Good sensor choice & placement
 - 3 DOF validated from FEA
 - Missing
 - What is the resolution?
 - Is there deflection caused by actuation force (axial)
 - Combined actuation force & force from tissue manipulation

Laboratory for Computation

Paper – Good and Bad

- Validation
 - Good
 - Thorough FEA
 - Missing
 - Studies with physical models
 - Does force measurement match simulation?
 - What thickness did they choose for fatigue study?
 - How was the fatigue study performed?

- Produce physical prototype
 - May be new challenges in manufacturing
- Calibration & test
 - Eye model
 - Manipulate known weights
- Analysis

Paper - Relevance

- Force
 - Paper: 7.5 mN
 - Our interest: 20 mN
- Size
 - Paper: forceps are introduced into the eye
 - Our interest: forceps do not need to enter cochlea or the inner ear cavity
- Biocompatibility
 - Both: Sterilizable and reusable

Paper - Relevance

- Actuation method
 - Project
 - Pinching motion
 - Paper
 - Sliding of actuation ring
 - Spring loaded
 - Assist with controlling actuation force
 - Normally closed
 - We are also interested in forces introduced after grasping
 - May conflict with feeding motion
 - Discuss with Dr. Galaiya

Paper - Relevance

- Optimization
 - One of my milestones
 - More factors
 - Cruciform leg thickness
 - Cruciform leg length

Billot et al (2015)

References

- Billot, Margot, et al. "Multi-Axis MEMS Force Sensor for Measuring Friction Components Involved in Dexterous Micromanipulation: Design and Optimisation." *International Journal of Nanomanufacturing*, vol. 11, no. 3/4, 2015, p. 161., doi:10.1504/ijnm.2015.071924.
- Handa, James, et al. "Design of 3-DOF Force Sensing Micro-Forceps for Robot Assisted Vitreoretinal Surgery." *IEEE Engineering in Medicine and Biology Society*, 2013, doi:10.1109/EMBC.2013.6610841.
- "Implant Programs Mankato." *Mayo Clinic Health System*, www.mayoclinichealthsystem.org/locations/mankato/services-and-treatments/audiology/implant-programs.

Thank you! Questions

