

Group 03: Project Update

Robot System Control for Automating Mosquito Microdissection

Team Member: Zhuohong (Zooey) He zhe17@jhu.edu

Mentors: Dr. Simon Leonard sleonard@jhu.edu

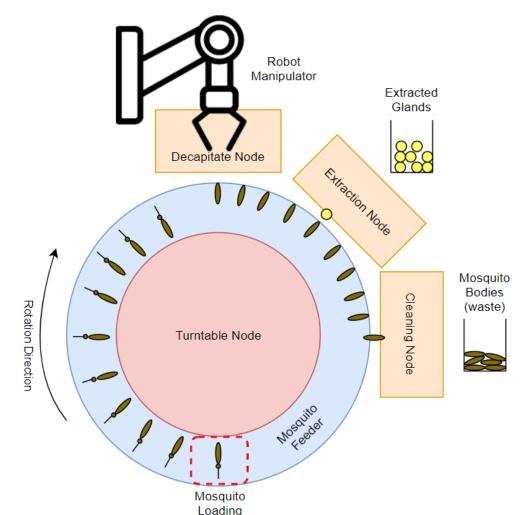
Dr. Russell Taylor

Industry Partners: Dr. Kim Lee Sim

Sumana Chakravarty

Date: March 25th, 2021

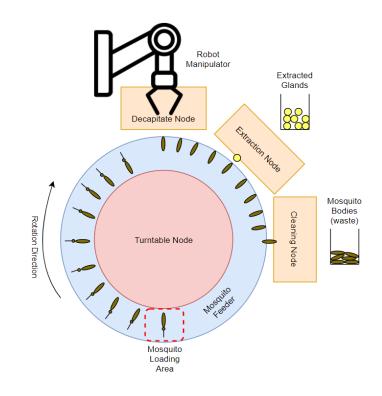
rht@ihu odu


rht@jhu.edu

Sanaria Inc.

Sanaria Inc.

Project Summary



- **Problem:** Sanaria needs to increase the production rate of *Plasmodium falciparum* sporozoites (PfSPZ) from infected mosquito glands to help produce a promising malaria vaccine.
- Overall Goal: Automate the gland dissection process using a robot system. Our goal is to dissect 600 mosquitoes per hour (mph).
- CIS Project Goal: To develop a robot system control algorithm that introduces parallel processes, error checking, and error recovery.

Area

Accomplished Works

- Turntable Node
 - Fully Implemented.
 - Testing on physical system using manual calls to node.
- Mosquito Pick, Place, and Decapitate Node (MPPD)
 - Fully Implemented (with potential bugs).
 - Testing stalled (Arduino/Galil connection error -> followed up).
- Cleaning and Extraction Nodes
 - Partially Implemented
 - No testing

Turntable Node

The file falt View Search Terminal Help

ToolyhegsanariaPC:-/sanaria_ws\$ rostopic echo /sanaria/turntable/status |

The file falt View Search Terminal Help

ToolyhegsanariaPC:-/sanaria_ws\$ rostopic echo /sanaria/turntable/status |

The file falt View Search Terminal Help

ToolyhegsanariaPC:-/sanaria_ws\$ rostopic pub /sanaria/turntable/goal sanaria_ect

ToolyhegsanariaPC:-/sanaria_ws\$ rostopic pub /sanaria/turntable/goal sanaria_ect

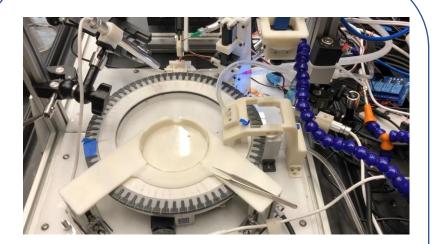
ToolyhegsanariaPC:-/sanaria_ws

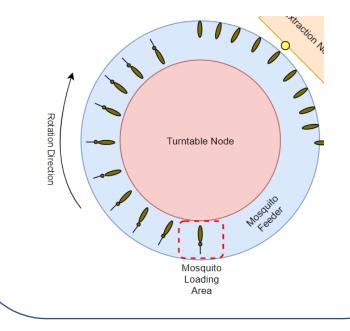
Toolyhegs

MPPD Node
Caller ID: 1

Extraction Node
Caller ID: 2

Cleaning Node Turntable Node

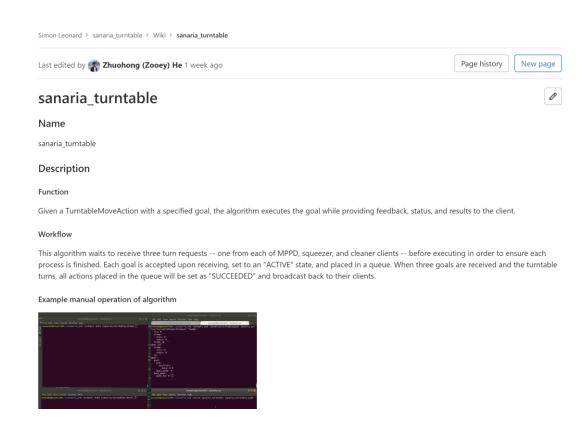

Topic: turntable/goal


Message:

goal_code: INCREMENT goal_id: 102931840

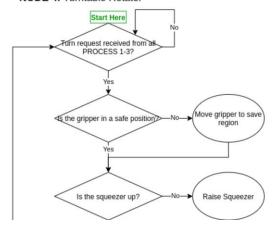
caller_id: 1

Hardware



Documentation

• Wiki page for turntable: https://git.lcsr.jhu.edu/sleonar7/sanaria turntable/-/wikis/home


Home

Introduction

The sanaria_turntable server inherits the Actionlib Server class and operates the turntable upon receiving goal commands from Actionlib Clients.

Service Workflow

NODE 4: Turntable Rotator

Timeline

- Currently about one week behind schedule
- On track to deliver minimum by 4/12, expected by 4/26

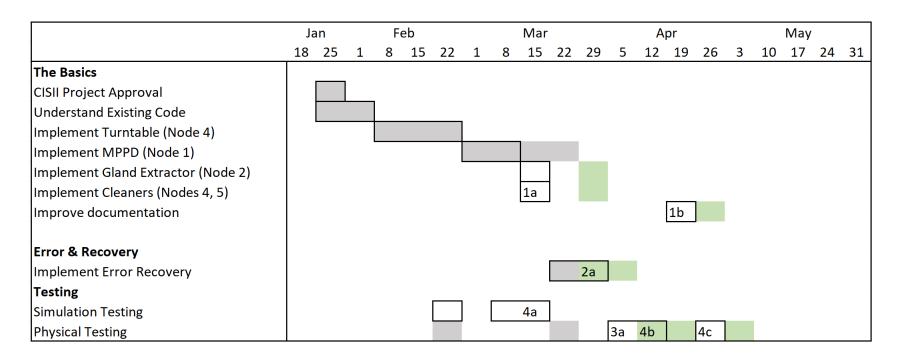


Figure: Proposed Timeline (Outline) vs Actual Timeline (Completed: Grey Shading, Expected: Green Shading)

Unforeseen Challenges

- Turntable: needed to go beyond simple Client/Server structure.
 - Solved: Inherited from base ROS client/server instead of simple client/server
- MPPD: physical testing had several challenges (Arduino), require help.
 - In progress: Meeting with Dr. Leonard tonight
- Simulation Testing: collaborator within lab busy with paper.
 - Cancelled: after conversation with mentor (Dr. Leonard)

Dependency Updates

Dependency	Need	Status	Followup	Contingency Plan	Deadline
Swipe Access to Robot in Lab	Testing and Debugging during development	Resolved	N/A	Update and test through simulation instead	2/1/2021
Error CNN from Computer Vision team	Used for initiating some recovery paths in flowchart	Resolved (CV Algorithms provided, need testing)	Contact and provide details for CV team	Use placeholder services for error detection	3/22/2021
Server/Client Structure is Insufficient	We use this structure to ensure robust communication	Resolved	Understand more about ActionLib	Develop a node without ActionLib, or override functions to support needs.	3/22/2021
JHU Remains in semi- open state	Needed to conduct testing on the physical hardware	N/A	Be vigilant to changes, and keep an eye out for JHU COVID status	Update and test through simulation instead	4/20/2021
Simulator needs to be developed	The simulator is an important bridge to hardware testing	Cancelled (Wanze has been busy)	Follow-up with another ab member (Wanze Li) who is working on this	Create a cautious plan to move to the hardware immediately	3/15/2021

Testing Plan

Level 1: Component Testing (On-going)

• Manually send goals to the component to observe reaction. Attempt to break / trick node.

Level 2: System Testing (April 5th to April 19th)

- Test the system on 100 mosquitoes.
- Determine throughput speed, success rate, and others.

Level 3: Error Simulation and Recovery

• Simulate errors by hard-coding error throws. Observe error recovery by system.

Thank You

Questions?