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e Sanaria has developed practical and effective malaria vaccines which could be
critical in the global fight against malaria [2] [3]

* Currently, production of malaria vaccine is heavily bottlenecked by manual
extraction of mosquito salivary glands

* Ongoing development of an automated robot system for the mosquito salivary
gland extraction

[7] Jongo et al. 2018

[8] Sanaria
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Goals

* Implement vision algorithms with both machine learning and
conventional image processing:

* Tasks are:
* Check if turntable cleaning was successful at the cleaning station
* Check if gripper has mosquito parts stuck to it
e Estimate the volume of the mosquito extrudate

* Integrate these algorithms with the current system
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Machine Setup / Demonstration

Cutting Station Squeezing Station Cleaning Station
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System Integration

* The vision algorithms will be integrated with the existing system
through the use of ROS Services.

* ROS Service will be implemented in C++

for OpenCV and Python for PyTorch
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Deliverables

Activity

Min Collect images of cleaning station and annotate

Implement image processing method for cleaning
station

Develop and train a neural network on the cleaning
station dataset

Integrate both with the rest of the system using ROS

Expected Repeat for gripper cleaning

Max Discuss with hardware team about collecting exudate
data

Repeat for exudate volume estimation
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Deliverable

Annotated cleaning station dataset

Functioning image processing based code and
high quality documentation in a wiki

Trained parameters of a neural network
classifier, along with code and high quality
documentation in a wiki

Working ROS services which can be successfully
interfaced with from the robot control
computer, and thorough documentation for
how to use them in a wiki page

Same deliverables as for turntable cleaning
station.

Plan for collecting exudate ground truth data

Same deliverables as for previous two tasks.

Original
Expected
Deadline

3/1

3/15

3/18

3/22

4/7

4/1

5/1

Status

Completed
(Delayed)

Functional but
Missing
Documentation
Functional but
Missing
Documentation

In Progress

In Progress

Completed

Won't reach full
maximum
deliverable in
time

New
Deadline

n/a

4/5

4/5

4/7

4/14

n/a

5/1



Progress — Dataset

* Cleaning Station Dataset

e All images annotated
e 293 in total
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* Gripper Dataset
* All images acquired
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Progress — Image Processing

* Image Processing method is 98% accurate on
the dataset.

* Mosquitos Segmented by filtering/thresholding
* Pixel count determines if slot is clean

* Working on a registration method
* Will improve robustness and accuracy
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Segmentation — Image Processing

« Convert Image to HSV COlOr
space

e Set value channel to 100%
e Convert back to RGB,
* Threshold by color

Image Source: http://www.ece.northwestern.edu/
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Segmentation — Image Processing
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* Perform a brightness threshold and
subtract from previous result

* Remove specular reflections which
interfere with the segmentation

* Only consider predefined region of
Interest

* Gaussian and Median filtering used
to clean up the results more
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Segmentation Results — Image Processing
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More Work — Image Processing

 Camera can move significantly if
bumped frame to frame making
the region of interest less precise

* Trying to detect features with a
Hough Transform to register a
more precise mask

e Will wait to finish this because
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Deep Learning

* Transfer learning with VGG16 pretrained
on ImageNet

* 100% accuracy on the Test set
* 97% accurate over entire dataset
* Did poorly when water was present
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Deliverables

Activity

Min Collect images of cleaning station and annotate

Implement image processing method for cleaning
station

Develop and train a neural network on the cleaning
station dataset

Integrate both with the rest of the system using ROS

Expected Repeat for gripper cleaning
Max Discuss with hardware team about collecting exudate
data

Repeat for exudate volume estimation
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Deliverable

Annotated cleaning station dataset

Functioning image processing based code and
high quality documentation in a wiki

Trained parameters of a neural network
classifier, along with code and high quality
documentation in a wiki

Working ROS services which can be successfully
interfaced with from the robot control
computer, and thorough documentation for
how to use them in a wiki page

Same deliverables as for turntable cleaning
station.

Plan for collecting exudate ground truth data

Same deliverables as for previous two tasks.

Original
Expected
Deadline

3/1

3/15

3/18

3/22

4/7

4/1

5/1

Status

Completed
(Delayed)

Functional but
Missing
Documentation
Functional but
Missing
Documentation

In Progress

In Progress

Completed

Won't reach full
maximum
deliverable in
time

New
Deadline

n/a

a/s

4/5

4/5

4/14

5/1



Dependencies

Dependency

Contingency

Planned
Plan Deadline

Hard Deadline

Continued access to GPU

Cameras for collection of
images of each task need
to be mounted and
integrated

Hardware team

Hardware team

Hardware team

GPU for training neural
network

To collect images for
annotation

300+ images of turntable
cleaning station in progress
with mosquitos.

300+ images of gripper
cleaning in progress with
mosquitos.

Method for ground truth
collection of mosquito
exudate volume for training
images
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| have a very capable
personal GPU

Ongoing

Use existing but less 3/14
desirable views from the
other existing cameras.

Begin working on the 3/1
image processing methods

for the other tasks while

waiting for additional

training data collection.

Small Delay: Begin working  3/14
“out of order” on the image
annotation and image

processing for the exudate
estimation task

Long Delay or Expected
Failure: Change from the
gripper cleaning task to one
of the are many remaining
vision tasks

Abandon neural network 3/15
approach and only do

image processing for this

task

Confidential

Ongoing

3/22 (for remaining
camera)

3/7

3/22

4/1

Currently have access to
the Diva computer and
personal GPU

Completed

Delayed but completed
slightly after the hard
deadline

Completed

Discussion completed
however the neural
network approach needs to
be abandoned
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Management

* Weekly Monday meetings with the entire mosquito project team

* Additional meetings as needed with the Vision team (likely
approximately weekly)
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