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1 Introduction
The goal of this project is to develop several vision based methods which are necessary
to further the progress of developing a robotic mosquito dissection system. This system
automatically extracts the salivary glands from mosquitoes which is an important step
required in the production of malaria vaccine.

2 Motivation
Malaria is a major global human health issue. In 2019, there were 229 million cases of
malaria, with 411 000 deaths [7]. A successful effort to prevent the spread of malaria
would have a dramatic impact on the lives of millions of people. Currently, the most
successful method for combating malaria on a large scale is by preventing mosquito-human
contact through various means such as mosquito nets and insecticides [6]. These have
proved remarkably effective, however there has been an apparent observable plateau in
their effectiveness in recent years.

Sanaria is a company which has developed the first malaria vaccine which is effective and
feasible to produce [4]. Malaria is a parasite which spreads among humans by inhabiting
the salivary glands of a host mosquito, which spreads the malaria parasite when it bites
humans. The production and distribution of Sanaria’s vaccine involves the extraction of
these infected mosquito salivary glands. This step during production is a severe bottleneck
and is preventing large scale production and deployment of the Sanaria vaccine.

A robotic mosquito dissection system for automating the extraction of infected salivary
glands is being developed to make salivary gland extraction significantly more efficient
which will enable large scale production of the malaria vaccine [5].

3 Prior Work
The prior work, as outlined in [5], is the mechanical design and software architecture of
a robot system which is able to position, decapitate, and extract the salivary glands of
mosquitoes in parallel. In addition, a handful of vision algorithms based on both image
processing and deep learning have been implemented and are fully integrated with the ROS
system. Figure 1 shows a rendering of the robot hardware and the results one of the vision
algorithms. The existing hardware and software architecture can accommodate the addition
of new camera sensors and vision algorithms without requiring any additional development.

4 Goals
The goal of this project is to create vision algorithms which will further the development
of the robotic mosquito dissection system which was described in section 3 by providing
automatic evaluation for steps in the system. In addition, these algorithms will also be
useful for reducing the operating costs and waste. The specific vision algorithms are:
classification of the turntable cleaning station outcome, classification of the gripper cleaning
outcome, and regression of the mosquito exudate volume which is the final product of each
mosquito dissection. Furthermore, each of these algorithms will be implemented twice, once
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Figure 1: Activities and Deliverables

with traditional image processing, and once with deep learning for a total of six algorithms.
The existing software architecture allows for the focus of this project to be purely on the
six vision algorithms which is critical to finishing the project given its short time-frame.

5 Technical Approach
This section outlines the technical approach. An important consideration is that the cleaner
classification tasks each will receive an image from a single mono RGB camera. The regres-
sion task will receive two mono RGB images from cameras which are positioned to provide
approximately orthogonal views.

5.1 Image Processing Approach
For the cleaner classification tasks, a combination of image filtering and thresholding will
be used to determine if a mosquito body or some other debris is located in the image or
not. This approach is very likely to succeed due to the consistency of the lighting and
the fixed camera position in the robot setup. For the exudate volume regression task,
filtering and thresholding will be used to segment the blob of exudate in the two provided
images. Subsequently, the volume estimation will consist of two different methods. The first
will perform an elliptical Hough transform in each view and then use the approximately
orthogonal geometry of the views to estimate an ellipsoid around the blob. The second
method will involve counting the number of pixels of exudate in each view and then scaling
that value appropriately.

5.2 Machine Learning Approach
Considering the small amount of ground truth data that will be available, transfer learning is
the most feasible approach to creating machine learning models. Learning will be initialized
with pre-trained ResNet [3] and YOLO [2] networks for the classification tasks. Depending
on the results, more models may be used. All but the last few initialized layers will be
frozen during training. For the regression task, there are two sub-tasks: segmentation
and regression. Transfer learning on a segmentation network such as SegNet [1] will be
attempted to segment the mosquito exudate in both views. This may not work well due
to the difficulty of segmentation coupled with the small number of ground truth images. If
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so, the image processing method for segmentation will be used instead. These segmented
image pairs can then be used to train a relatively simple model to regress the volume.

5.3 System Integration
In the current layout of the system, there are two computers. The main robot computer
interfaces with the actuators and cameras of the robot, while the vision computer, which
contains a GPU and which performs the vision tasks, is remote. Integration will be done
by creating a ROS Service wrapper around each image processing and machine learning
function. This will allow the robot main computer to call all of the remote vision functions
as needed. The flow of data though the system can be seen in figure 2

Figure 2: System Overview

6 Key Activities and Deliverables
The key activities and deliverables are outlined below in Figure 3. Note that they are cat-
egorized into minimum, expected, and maximum tiers. For brevity the chart is condensed;
the contents of the minimum tier will be repeated for the respective tasks of the expected
and maximum tiers.

For each of the three tasks, cleaning station classification, gripper cleaning classification,
and exudate estimation, the deliverables consist of the following components:

Machine Learning Approach

– Dataset of 300 hand annotated images

– PyTorch based python code for training a neural network for the task

– PyTorch based python function for quickly evaluating the network’s prediction
on an image

– ROS service python wrapper for integrating the neural network predition with
ROS

– Wiki documentation detailing the network architecture, training procedure, and
ROS integration in python

Image Processing Approach
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Figure 3: Activities and Deliverables

– OpenCV based C++ code of an image processing algorithm for the task

– C++ ROS service wrapper for integrating the algorithm with ROS

– Wiki documentation detailing the image processing algorithm and the ROS in-
tegration in C++.

.

A more detailed breakdown and discussion of the estimated completion time for each task
can be seen in the Timeline section and in figure 5.

7 Dependencies
The dependencies, and their respective contingency plans are explained in detail in figure
4.

8 Timeline
The Gantt Chart in figure 5 shows the expected working period for each task. There is
significant overlap in many of the tasks due the opportunities to work on tasks in parallel.
Namely, it is possible to work on the image processing tasks with only a few images, and it
is to work on any other task while waiting for the neural networks to train. Additionally,
the period to complete the gripper cleaning classification task is expected to be significantly
shorter than that of the turntable cleaning classification because it is very similar, and most
of the code from one will be reusable with the other. A last point of discussion is that the
discussions for collecting ground truth exudate volume data must begin early to allow time
for the implementation of the plan.
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Figure 4: Dependencies

9 Roles and Management Plan
I am the sole group member for this project and my mentors are Balazs Vagvolgyi, Alan
Lai, and Parth Vora. Balazs will be my main contact for help with the robot system and
with the ROS interfacing. Alan and Parth previously implemented similar machine learning
and image processing based vision algorithms which are currently in use. They will be a
valuable resource for consulting about practical implementations.

The management plan is the following. I am attending weekly meetings with the full
mosquito project team where I will be able to discuss with the hardware team, receive
feedback, and/or bring up concerns. I will additionally meet with Balazs on a somewhat
regular basis to keep in sync and to ask for help. These meetings will be as needed, with
approximately weekly or biweekly frequency. I will also correspond with everyone else over
email.
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Figure 5: Gantt Chart of the estimated work timeline
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