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1 Introduction and Relevance
The goal of Project 5: ”Vision Guided Mosquito Dissection for the Production of Malaria
Vaccine” is to develop several vision based methods for a robotic mosquito dissection system.
The system is designed to automatically extract the salivary glands from mosquitoes, an
important step required for the production of malaria vaccine.

Particularly, two out of the three major vision tasks of the project are to develop image
classification solutions using both a classical image processing approach, and also a deep
learning based approach. Both classification tasks involve determining if mosquito remains,
which are left behind during multiple stages of the salivary gland extraction process, were
successfully cleaned by an associated cleaning process. Figure 1 contains an example image
for one of the cleaning tasks. Using both classical and deep learning methods for the same
task allows the outputs to be cross-verified, resulting in greater overall confidence in the
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Figure 1: An example image from one of the cleaning tasks for the mosquito dissection
system which is being developed at JHU

results. The success of these tasks is critical for maximizing the speed of the system, as well
as for being a reliable metric when analyzing performance of the system after any changes,
as well as for analyzing failure cases and frequency.

A major challenge for the development of the deep learning implementations is that
there is a very small amount of training data, only on the order of a few hundred labeled
training examples. Historically, the success of deep networks is associated with the number
of training examples. There have been advancement, however, in achieving good perfor-
mance with reducing data and reduced training times. The chosen paper A Comprehensive
study on deep Image Classification with Small Datasets [1] paper investigates deep learning
classification approaches in order to obtain better results with little training data.

2 Summary

2.1 Introduction and Background
The authors first provide the current context for deep learning with small datasets. They
describe how Deep Convolutions Neural Networks are the most effective general solution
for image classification and how Deep learning on large datasets is capable of achieving
superhuman performance in visual recognition. They highlight that poor generalization
due to both underfitting and overfitting is a major hurdle which arises when using deep
learning on small datasets. To elaborate, a large deep network with millions of parameters
can easily overfit to a small dataset, however a smaller model might not be flexible enough
to model task adequately, resulting in underfitting. The limitations from using a smaller
model to prevent overfitting on a small dataset means that state of the art performance
can not be achieved.

The authors then explain this underfitting vs overfitting problem in greater technical
detail: The depth of Convolutional Neural Netowrks (CNN) particularly the feature hierar-
chies that they extract are where their predictive power resides. Particularly, the success of
networks like VGG made it clear that the depth of a network is critical to its performance
[7]. This was further demonstrated after the success of ResNets, which were relatively sim-
pler, but substantially deeper than previous networks [3]. In order to reduce the number of
parameters in a model to prevent overfitting to a small dataset, the number of layers must
decrease which inherently lowers the model’s generalizability. The authors then briefly men-
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Figure 2: Dataset Comparison

Figure 3: Best architecture for training on CIFAR10 from scratch

tion data augmentation before moving on to discuss transfer learning. Transfer learning is
where models trained on large scale datasets such as Image Net can have their early layers
reused in a new learning since the features learned in the earlier layers are more generic
filters.

2.2 Experiments
The authors performed two main experiments using two small datasets, CIFAR10 and
Caltech101. Caltech101 has 9,146 images and CIFAR10 has 100,000 images. See figure 2
for more details about the datasets [4] [6]. The ImageNet dataset mentioned in the figure
was used for transfer learning which is described later [2]. For all models, the optimizer
was Stochastic Gradient Descent with a learning rate was 0.001.

The first experiment studies how the number of convolutional layers in a deep learn-
ing architecture affects the predictive performance when training on a small dataset from
scratch. For this they modify the VGG-16 architecture by removing a number of the convo-
lutional layers from the end. The final convolution output is fed into three fully connected
layers of size 512, 256 and the number of classes in the dataset, respectively. A total of
eight networks with between 2 and 9 convolutional layers are trained on both the CIFAR10
and Caltech101 datasets. Max pooling layers are used in between the convolutional layers,
and the fully connected layers use ReLU activation and dropout. An example of one of the
architectures can be seen in figure 3.

The second experiment studies how the number of convolutional layers which are reini-
tialized and trained, rather than remaining ”frozen”, affects performance during transfer
learning. The base network is VGG-16 pre-trained on ImageNet, where the last convolu-
tional layer output is fed into three fully connected layers, identical to what was previously
described. Finally, for each dataset, the transfer learning approch with the best perfor-
mance was retrained one final time where the previously ”frozen” layers are also trained
without re-initializing, and with 1/10th the learning rate. The VGG-16 layers which are
used can be seen in figure 4
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Figure 4: VGG-16 Convolutional layers. The kernel size and number of neurons are listed
for each later.

2.3 Results
Figure 5 shows the results for training Caltech101 from scratch. Note that this is the
smallest dataset, and the that only 4 convolutional layers was most effective.

Figure 5: Train and test results of training on Caltech101 with from scratch versus the
number of convolutional layers.

Figure 6 shows the results for training CIFAR10 from scratch. Note that this dataset is
an order of magnitude larger than Caltech101, and it is most successful with an aditional
convolutional layer. The association between dataset size and the number of parameters
before overfitting occurs is clear here.

The test results from transfer learning with a different numbers of frozen layers is shown
in figure 7. Not that once again, the overfitting problem is very clear here. Caltech101, an
order of magnitude smaller than CIFAR10, performs best when retraining only the last two
convolutional layers and the fully connected layers. The best results for CIFAR10 were for
retraining the last five convolutional layers and the fully connected layers.

Finally, the result of unfreezing and training all of the parameters are shown in figure 8.
Once again, it seems that the overfitting problem occurs for the smaller Caltech101 dataset
due to the increased number of parameters, as performance goes down significantly. It does
not occur for the larger CIFAR10 dataset where performance is improved.
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Figure 6: Train and test results of training on CIFAR10 with from scratch versus the
number of convolutional layers. The best result is highlighted by the rectangle

Figure 7: Transfer learning test accuracy for CIFAR10 and Caltech101 versus the number
of unfrozen convolutional layers

Figure 8: Best performance for training from scratch, transfer learning, and transfer learn-
ing where no layers are frozen. Note that the latter case was only trained once per dataset,
using the best transfer learning approach.

3 Critical Assessment
Overall I felt that this paper was a bit weak. I did not feel that I got as much out of
it as the title A Comprehensive Study on Deep Image Classification with Small Datasets
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would suggest. There were a number of technical details which were never mentioned,
such as what loss function was used, whether regularization was used, how the data was
preprocessed, or the exact location the max pooling layers for all architectures. The biggest
flaw, however, was that the paper did not cover enough scenarios, and it did not make use
of many modern techniques which were considered standard practice by the time the paper
was published in 2020.

I will provide some specific details to substantiate these critiques. Firstly, the authors
only used one base model, VGG-16, for their experiments. Using a single model does not
seem thorough enough to make any generalizable claims. Additionally, VGG-16 is about
seven years old now, and state of the art performance on ImageNet is currently more than
15% better than VGG-16’s performance. Some standard techniques which were not used
are a better performing optimizer such as ADAM [5], batch normalization, or even data
augmentation to name a few. The lack of at least a meaningful discussion for why data
augmentation was excluded from the experiments is particularly egregious considering how
much of a benefit it provides to small datasets. The paper did not attempt to quantify
the relationship between the number of trainable parameters for each model and the size
of the dataset. This would have been helpful in an application by providing a quantifiable
estimate for how complex a model should be for a given small dataset. Finally, the authors
did not address any of these points in a future work section.

I have some suggestions for additional future experiments which I feel would be partic-
ularly valuable. It would be interesting to run similar experiments for datasets on the order
of 1000 and 100 training examples. The smallest dataset at approximately 10,000 images is
still quite large for many applications, particularly in the medical field. Additionally, since
there seems to be a limit on the number of parameters in a model in relation to the dataset
size, it would be interesting to see how changing the input resolution of the images would
affect performance. Downsizing the images could significantly reduce the number of pa-
rameters required for a given architecture, without sacrificing too much information. This
could allow for deeper networks before the overfitting parameter limit is reached, potentially
combating any underfitting which may occur due to the shallower networks required for
smaller datasets. Finally, it would also be useful to experiment with removing parameters
from the the fully connected layers rather than the convolutional layers. In fact, most of
the parameters are in the fully connected layers. Removing just one fully connected layer
could allow for a much deeper set of convolutions for the same total number of parameters.
This might improve performance by reducing underfitting without increasing overfitting.

4 Conclusion
In conclusion, despite the critiques mentioned, this paper provides useful insight into how
the number of convolutional layers affects performance on a small dataset for both training
from scratch, and for transfer learning. This has direct applications for my project’s deep
learning image classification task as the dataset will only containt about 300 images. I
will try using a substantially smaller number of convolutional layers, between 2 and 5, as
performance could potentially be better, and I would not have initially tried using so few
layers.
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