Robot-Assisted FBG-based Sensorized Needle Calibration

Paper Presentation

Team 6: Kefan Song

Mentors: Iulian Iordachita, Dimitri Lezcano, Jin Seob Kim

Project Summary

- **Objective:** to calibrate flexible needles with FBG-based shape-sensing capabilities
- Current problem: manual needle calibration is very time-consuming and prone to human error
- **Project aim:** to develop an automatic needle calibration process that can be both precise and efficient

Paper Selection

Improved FBG-Based Shape Sensing Methods for Vascular Catheterization Treatment

Omar Al-Ahmad, Mouloud Ourak, Jan Van Roosbroeck, Johan Vlekken, and Emmanuel Vander Poorten

Summary

This paper mainly discusses the methods for fiber integration within catheters to improve shape estimation accuracy and repeatability. It also introduces a two-step calibration process for intrinsic twist compensation and a practical method for fiber parameter identification. An example calibration setup was then demonstrated and validated.

Overall Structure

- Section I: Introduction
- Section II: Basic Principles
- Section III: Contributors to Shape Accuracy
- Section IV: Experimental Setup
- Section V: Results
- Section VI: Conclusion

Section I: Introduction

- History and advantages of Fiber Optic Shape Sensing (FOSS)
- Fiber Bragg Gratings (FBGs) vs. Rayleigh scattering
- Optical Frequency Domain Reflectometry (OFDR) vs. Wavelength Division Multiplexing (WDM)
- Basis for Reconstruction methods
 - Frenet-Serret frames
 - Parallel transport frames
 - Constant curvature segmentation
 - Helical geometry

Authors	Interrogation	Fibers & Cores	Conf.	Model	Length	#Grts	Spacing	Validation	Error	R _{min}
Abayazid et al. [11]	FBG / WDM	3 outer / no central	Straight	Constant curvature	90	4	30	2D / 3D	2.10 ± 1.10 (mean)	375
Henken et al. [12]	FBG / WDM	3 outer / no central	Straight	Frenet-Serret	70	2	70	2D	1.32 ± 0.48 (mean)	NA
Yi et al. [23]	FBG / WDM	4 outer / no central	Straight	Frenet-Serret	400	5	100	2D / 3D	4.10 (mean)	NA
Elayaperumal et al. [24]	FBG / WDM	3 outer / no central	Straight	Other	85	2	85	2D	4.20 (rms)	NA
Gander et al. [25]	FBG / WDM	4 (MCF) / no central	Straight	Other	NA	NA	NA	2D	2.00 (max)	20
Van de Berg et al. [13]	FBG / WDM	3 outer / no central	Straight	Frenet-Serret	120	4	40	3D	2.60 ± 1.10 (mean)	71.4
Parent et al. [26]	OFDR	3 outer / no central	Straight	Other	NA	NA	NA	2D	≈1.00 (rms)	17.5
Sefati et al. [14]	FBG / WDM	3 outer / no central	Straight	Constant curvature	NA	NA	NA	3D	0.62 (max)	101.6
Ryu et al. [17]	FBG / WDM	3 outer / no central	Straight	Other	NA	NA	NA	2D	0.84 ± 0.62 (mean)	NA
Leyendecker et al. [27]	FBG / WDM	3 (MCF) / central	Straight	Constant curvature	250	6	50	2D / 3D	15.40 (max)	NA
Lally et al. [28]	OFDR	3 (MCF) / central	Helical	Other	30000	NA	NA	3D	210 (max)	NA
Klute et al. [1]	OFDR	3 outer / no central	Straight	Constant curvature	2000	NA	NA	3D	42.9 (max)	14
Duncan et al. [10]	OFDR	3 (MCF) / no central	Straight	NA	1100	110	10	2D	22.50 ±0.5 (max)	667
Khan et al. [29]	FBG / WDM	4 (MCF) / no central	Straight	Frenet-Serret	108	6	18	2D / 3D	1.05 (max)	NA
Roesthuis et al. [18]	FBG / WDM	3 outer / no central	Straight	Frenet-Serret	90	4	3	2D	1.14 (mean)	30
Kim et al. [15]	FBG / WDM	3 outer / no central	Straight	Constant curvature	150	NA	NA	3D	0.53 (max)	NA
Wang et al. [30]	FBG / WDM	4 outer / no central	Straight	Frenet-Serret	200	5	50	3D	15.00 (mean)	NA
Moore et al. [2]	FBG / OFDR	3 (MCF) / no central	Straight	Frenet-Serret	1100	111	10	3D	31.06 (max)	14.3
Roesthuis et al. [4]	FBG / WDM	3 outer / no central	Straight	Constant curvature	90	4	30	2D / 3D	1.66 (max)	15

TABLE I Shape Sensing Examples From Previous Literature (All Dimensions Are in Millimetre

Section I: Introduction

- Major factors on reconstruction accuracy
- Contributions in this paper
 - Fiber integration approach into a catheter
 - Two-step calibration method for intrinsic twist
 - Approach for spatial curve reconstruction
 - Parameter identification method
 - Validation process of all the methods

Section II: Basic Principles

1. Principles behind FBG sensors

$$egin{aligned} \epsilon &= -\kappa y \ & rac{\lambda_B - \lambda_{B_0}}{\lambda_{B_0}} = rac{\Delta \lambda_B}{\lambda_{B_0}} = S_\epsilon \Delta \epsilon + S_T \Delta T \ & \Delta \epsilon_i = rac{\Delta \lambda_{B,i}}{S_\epsilon \lambda_{B_0,i}} - rac{\Delta \lambda_{B,1}}{S_\epsilon \lambda_{B_0,1}} \end{aligned}$$

Section II: Basic Principles

2. Strain, curvature and Bend Angle

Section II: Basic Principles

- 3. Shape Reconstruction
- Frenet-Serret formula

$$egin{aligned} &rac{d\mathbf{T}}{ds} = \kappa \mathbf{N}, \ &rac{d\mathbf{N}}{ds} = -\kappa \mathbf{T} + au \mathbf{B}, \ &rac{d\mathbf{B}}{ds} = - au \mathbf{N}, \ &C_s(s) = C_{s,0} + \int_0^l oldsymbol{T}(s) ds \end{aligned}$$

- interrogation method
- fiber integration method
- presence of twist compensation
- calibration for twist compensation
- parameter identification
- reconstruction algorithm

• interrogation method: WDM vs. OFDR

	WDM	OFDR		
Spatial resolution	Lower (~1mm)	Extremely high (~10µm)		
Refresh rate	High	Not as high		
SNR	High	Not as high		
Cost	Cheaper	More expensive		
Wavelength	More accurate	Less accurate		
measurement accuracy				

- fiber integration method
- 3 guidelines:
 - reducing the spacing between the multiplecore fiber (MCF) and the inner lumen of the catheter
 - including one or two rigid fixations at the base of the MCF with distance Δx_prox to the closest FBG grating
 - attaching the MCF at a location where its tip is at distance Δx_dist away from the tip of the catheter

presence of twist compensation

- Fiber is more sensitive in sensing the strain caused by the twist
- Intrinsic twist is present in FBG fibers even when they are not externally loaded. Mechanical design is necessary to reduce the twist.

- calibration for twist compensation
- 2-step procedure proposed

$$\Delta \epsilon_i = \frac{\Delta \lambda_{B,i}}{S_{\epsilon} \lambda_{B_0,i}} - \frac{\Delta \lambda_{B,1}}{S_{\epsilon} \lambda_{B_0,1}}$$

$$oldsymbol{\kappa}_{app} = -\sum_{i=1}^{N} rac{\epsilon_i}{r} \cos heta_i \hat{oldsymbol{i}} - \sum_{i=1}^{N} rac{\epsilon_i}{r} \sin heta_i \hat{oldsymbol{j}}$$

$$\kappa = \frac{2|\boldsymbol{\kappa}_{app}|}{N},$$

- parameter identification
- Procedure proposed
 - 1. Position in various ground-truth scenarios
 - 2. Minimize the cost function: $C(\Theta) = \sum_{k=1}^{n} \max(d(C_{s,gr}(s,k) C_{s,rc}(s,k,\Theta)))$

for Θ subject to

$$\begin{cases} \boldsymbol{\Theta} = [\Delta \theta, r, S_{\epsilon}], \\ \Delta \theta_{\min} \leq \Delta \theta \leq \Delta \theta_{\max}, \\ r_{\min} \leq r \leq r_{\max}, \\ S_{\epsilon,\min} \leq S_{\epsilon} \leq S_{\epsilon,\max}, \end{cases}$$

- reconstruction algorithm
- 3 modifications:
 - code for twist compensation
 - construct the spatial curve using the Helical Extension Method
 - compare different interpolation techniques and employ one with the best performance

Section IV: Experimental Setup

- Static tests (left)
- Dynamic tests(right)

Section IV: Experimental Setup

- Static tests
- Parameter optimization
 12 shapes x 5 insertions each
 Half for optimization, half for validation
- 2. Temperature variation Submerge catheter in hot water bath

Section IV: Experimental Setup

- Dynamic tests
- EM sensor fixed at the tip
- 4 effects to be tested
 - Longitudinal catheter rotation
 - Repeatability
 - Tendon actuation
 - Dynamic catheter movement

- Parameter optimization improves accuracy
- Twist compensation improves accuracy
- Optimized parameters perform well for shapes excluded from optimization (data2)

- variation caused by temperature is mostly uniform and are almost negligible
- rotation induces negligible twist and has no major effect on shape accuracy

- excellent repeatability, result will likely improve in real-life settings
- shape reconstruction is not affected by tendon actuation

- distance error increases when there's sharp bends
- could be mitigated by applying lubrication in the sheath, and to use larger FBG spacing to avoid wavelength overlap in the spectrum

Section VI: Conclusion

 This paper explored the effect of multiple factors on the accuracy of shape reconstruction of an FBG-based catheter. It also proposed several different algorithms to mitigate the possible errors. Through experiment, it shows that when applying these calibration algorithms, the FBG-based catheter is able to reconstruct the shape pretty accurately.

Critiques

Pros:

- Easy to follow
- Well structured
- Equations are clear
- Detailed explanation of the experiment

Cons

• No classification of good and bad FBG sensors

Takeaways

- Good general guidance
- Principles are applicable
- Good reference experiment

References

- Seifabadi, R., Iordachita, I., & Fichtinger, G. (2012, June). Design of a teleoperated needle steering system for MRI-guided prostate interventions. In 2012 4th IEEE Ras & Embs International Conference on Biomedical Robotics And Biomechatronics (Biorob) (pp. 793-798). IEEE.
- Al-Ahmad, O., Ourak, M., Van Roosbroeck, J., Vlekken, J., & Vander Poorten, E. (2020). Improved FBG-Based Shape Sensing Methods for Vascular Catheterization Treatment. IEEE Robotics and Automation Letters, 5(3), 4687-4694.

