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Project Summary

* Objective: to calibrate flexible needles with FBG-based shape-sensing
capabilities

* Current problem: manual needle calibration is very time-consuming
and prone to human error

* Project aim: to develop an automatic needle calibration process that
can be both precise and efficient
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Summary

This paper mainly discusses the methods for fiber integration within
catheters to improve shape estimation accuracy and repeatability. It
also introduces a two-step calibration process for intrinsic twist
compensation and a practical method for fiber parameter

identification. An example calibration setup was then demonstrated
and validated.
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Overall Structure

e Section I: Introduction
 Section Il: Basic Principles
e Section Ill: Contributors to Shape Accuracy

* Section IV: Experimental Setup
e Section V: Results
e Section VI: Conclusion
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Section I: Introduction

* History and advantages of Fiber Optic Shape Sensing (FOSS)

* Fiber Bragg Gratings (FBGs) vs. Rayleigh scattering

e Optical Frequency Domain Reflectometry (OFDR) vs. Wavelength

Division Multiplexing (WDM)
e Basis for Reconstruction methods

TABLE 1

SHAPE SENSING EXAMPLES FROM PREVIOUS LITERATURE (ALL DIMENSIONS ARE IN MILLIMETRE)

Authors Interrogation Fibers & Cores Conf. Model Length | #Grts | Spacing | Validation Error Rmin
Abayazid et al. [11] FBG / WDM | 3 outer / no central Straight | Constant curvature | 90 4 30 2D/ 3D 2.10 £ 1.10 (mean) | 375
Y F Henken et al. [12] FBG / WDM | 3 outer / no central Straight | Frenet-Serret 70 2 70 2D 1.32 £ 0.48 (mean) | NA
re n e - e r re ra l I l e S Yi et al. [23] FBG / WDM | 4 outer / no central Straight | Frenet-Serret 400 5 100 2D /3D 4.10 (mean) NA
Elayaperumal er al. [24] | FBG / WDM | 3 outer / no central Straight | Other 85 2 85 2D 4.20 (rms) NA
Gander er al. [25] FBG / WDM | 4 (MCF) / no central | Straight | Other NA NA NA 2D 2.00 (max) 20
Van de Berg et al. [13] FBG / WDM | 3 outer / no central Straight | Frenet-Serret 120 4 40 3D 2.60 £ 1.10 (mean) | 71.4
[ ] P a ra I I e I t ra n S O rt fra m e S Parent et al. [26] OFDR 3 outer / no central Straight | Other NA NA NA 2D 221.00 (rms) 17.5
p Sefati et al. [14] FBG / WDM | 3 outer / no central Straight | Constant curvature | NA NA NA 3D 0.62 (max) 101.6
Ryu et al. [17] FBG / WDM | 3 outer / no central Straight | Other NA NA NA 2D 0.84 + 0.62 (mean) | NA
Leyendecker et al. [27] FBG / WDM | 3 (MCF) / central Straight | Constant curvature | 250 6 50 2D/ 3D 15.40 (max) NA
° Lally et al. [28] OFDR 3 (MCF) / central Helical Other 30000 NA NA 3iD 210 (max) NA
[ J CO n Sta nt C u rva t u re S e m e n ta t I O n Klute er al. [1] OFDR 3 outer / no central Straight | Constant curvature | 2000 NA NA 3D 42.9 (max) 14
Duncan et al. [10] OFDR 3 (MCF) / no central | Straight | NA 1100 110 10 2D 22.50 £0.5 (max) 667
Khan et al. [29] FBG / WDM | 4 (MCF) / no central | Straight | Frenet-Serret 108 6 18 2D/ 3D 1.05 (max) NA
. Roesthuis et al. [18] FBG / WDM | 3 outer / no central Straight | Frenet-Serret 920 4 3 2D 1.14 (mean) 30
o H I Kim et al. [15] FBG / WDM | 3 outer / no central Straight | Constant curvature | 150 NA NA 3D 0.53 (max) NA
e I C a g e O l I | e ry Wang et al. [30] FBG / WDM | 4 outer / no central Straight | Frenet-Serret 200 5 50 3D 15.00 (mean) NA
Moore et al. [2] FBG / OFDR | 3 (MCF) / no central | Straight | Frenet-Serret 1100 111 10 3D 31.06 (max) 14.3
Roesthuis et al. [4] FBG / WDM | 3 outer / no central Straight | Constant curvature | 90 4 30 2D/ 3D 1.66 (max) 15
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Section I: Introduction

* Major factors on reconstruction accuracy

e Contributions in this paper
* Fiber integration approach into a catheter
» Two-step calibration method for intrinsic twist
* Approach for spatial curve reconstruction
e Parameter identification method
* Validation process of all the methods
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Section Il: Basic Principles

1. Principles behind FBG sensors
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Section Il: Basic Principles

2. Strain, curvature and Bend Angle
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Section Il: Basic Principles

3. Shape Reconstruction

* Frenet-Serret formula
dT
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ds Aabt
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Section IllI: Contributors to Shape Accuracy

* interrogation method

e fiber integration method

e presence of twist compensation

* calibration for twist compensation
e parameter identification

* reconstruction algorithm
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Section IllI: Contributors to Shape Accuracy

* interrogation method: WDM vs. OFDR

Spatial resolution Lower (~¥1mm)
Refresh rate High

SNR High

Cost Cheaper
Wavelength More accurate

measurement accuracy
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Section IllI: Contributors to Shape Accuracy

* fiber integration method | Tendons . Fiber wbe

* 3 guidelines:
* reducing the spacing between the multiple-

core fiber (MCF) and the inner lumen of the Cahoter p  Fiber  First FBG Rigid fixations
catheter

* including one or two rigid fixations at the
base of the MCF with distance Ax_prox to the
closest FBG grating

 attaching the MCF at a location where its tip is
at distance Ax_dist away from the tip of the
catheter
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Section IllI: Contributors to Shape Accuracy

* presence of twist compensation
* Fiber is more sensitive in sensing the strain caused by the twist

* Intrinsic twist is present in FBG fibers even when they are not
externally loaded. Mechanical design is necessary to reduce the twist.
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Section IllI: Contributors to Shape Accuracy

* calibration for twist compensation
e 2-step procedure proposed
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Section IllI: Contributors to Shape Accuracy

e parameter identification

* Procedure proposed

1. Position in various ground-truth
scenarios )
2. Minimize the cost function: C(©) =) max( d(C gr(s.k) — Csre(s, k. ©)))
1=1
for ® subject to
4

O = [A0, r, S,
AQmin S A6 S AQmax:
< T'min <r S T'max

Se,min < SE S Se.nmx;

y ) Computatonal “ JOHNS HOPKINS
Sensing + Robotics » © UNIVERSITY




Section IllI: Contributors to Shape Accuracy

* reconstruction algorithm

* 3 modifications:
e code for twist compensation
e construct the spatial curve using the Helical Extension Method

* compare different interpolation techniques and employ one with the best
performance
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Section IV: Experimental Setup

e Static tests (left)
* Dynamic tests(right)
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Section IV: Experimental Setup

e Static tests

1. Parameter optimization
12 shapes x 5 insertions each
Half for optimization, half for validation

2. Temperature variation
Submerge catheter in hot water bath
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Section IV: Experimental Setup

* Dynamic tests
* EM sensor fixed at the tip

* 4 effects to be tested
* Longitudinal catheter rotation
* Repeatability
* Tendon actuation
* Dynamic catheter movement
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Section V: Results
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Section V: Results
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 rotation induces negligible twist
and has no major effect on shape
accuracy
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Section V: Results

» excellent repeatability, result will
likely improve in real-life settings

* shape reconstruction is not affected
by tendon actuation
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Section V: Results

e distance error increases when there’s
sharp bends

e could be mitigated by applying
lubrication in the sheath, and to use
larger FBG spacing to avoid wavelength
overlap in the spectrum
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Section VI: Conclusion

* This paper explored the effect of multiple factors on the accuracy of
shape reconstruction of an FBG-based catheter. It also proposed
several different algorithms to mitigate the possible errors. Through
experiment, it shows that when applying these calibration algorithmes,
the FBG-based catheter is able to reconstruct the shape pretty
accurately.
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Critigues

Pros:
e Easy to follow
* Well structured
e Equations are clear
* Detailed explanation of the experiment

Cons
* No classification of good and bad FBG sensors
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Takeaways

* Good general guidance
* Principles are applicable
* Good reference experiment
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