Kinematics Model

Figure 1: Overview of SHER and I^{2} RIS

1. Forward Kinematics of SHER

SHER has a total of 5 joints, including x, y and z translations and rotations around y -axis and x -axis. These joints are called q_{1} to q_{5} respectively. We will use the notation $F=[R, p]$ for transformation and $\operatorname{Rot}(a x i s$, angle) for rotation.

Figure 2: Frames including X and Y Stages
From "base_plate" to "linear_1", $F_{1}=\left[\mathbb{I},(0,0,0.0127)^{T}\right]$
From "linear_1" to "spacer", $F_{2}=\left[\mathbb{I},\left(0, q_{1}, 0.04725\right)^{T}\right]$
From "spacer" to "linear_2", $F_{3}=\left[\mathbb{I},(0,0,0.0127)^{T}\right]$
From "linear_2" to "z_stage", $F_{4}=\left[\mathbb{I},\left(q_{2}, 0.0075,0.04725\right)^{T}\right]$
From "z_stage" to "linear_3", $F_{5}=\left[\mathbb{I},(0,0.058,0.15858)^{T}\right]$

Figure 3: Frames including Z Stages, Roll and Pitch
From "linear_3" to "rotary_stage", $F_{6}=\left[\mathbb{I},\left(00.04725, q_{3}\right)^{T}\right]$
From "rotary_stage" to "SHER_base", $F_{7}=\left[\operatorname{Rot}\left((0,1,0), q_{4}\right),(0,0.063,0)^{T}\right]$
From "SHER_base" to "SHER_horizontal_1", $F_{8}=\left[\operatorname{Rot}\left((1,0,0), q_{5}\right),(0,0.304,0.015)^{T}\right]$
From "SHER_horizontal_1" to "SHER_vertical_1", $F_{9}=\left[\operatorname{Rot}\left((1,0,0),-q_{5}\right),(0,-0.023,0.048)^{T}\right]$
From "SHER_vertical_1" to "IRIS", $F_{10}=\left[\operatorname{Rot}((1,0,0), q 5),(0,0.120,-0.015)^{T}\right]$
From "IRIS" to "Snake_1", $F_{11}=\left[\mathbb{I},(0,0.02177,-0.07628)^{T}\right]$
From "Snake_1" to "1_2"(first virtual snake joint), $F_{12}=\left[I T,(0,0.02177,-0.07628)^{T}\right]$
The forward kinematics of SHER is then multiplication of F_{1} to F_{12}.
2. Forward Kinematics of I^{2} RIS
I^{2} RIS has two input joint angles named q_{6} and q_{7}. These two angles control the amount and direction of rotation between each two links of the snake. Note that the direction of rotation alternates from link to link, and is perpendicular to the last one. q_{6} represents the rotation around the y-axis, while q_{7} represents the rotation around the x -axis.

Figure 4: Snake End of I ${ }^{2}$ RIS
There is a spherical face between each two link of the snake. We can construct two virtual circles as
shown in Figure 5, which fits the spherical surfaces, to represent rotation between links. We denote the rotation around y-axis $R_{6}=\operatorname{Rot}((0,1,0), q 6)$ and the rotation around x-axis $R_{7}=\operatorname{Rot}((1,0,0), q 7)$.

Figure 5: Joint Mechanism of Snake Distal End
The transformation between any two links could be represented as two transformation matrices with the same rotation part (either R_{6} or R_{7}) such as $F_{7 a}=\left[R_{7},(0,0,0.00145)^{T}\right]$ and $F_{7 b}=\left[R_{7},(0,0,-0.0016)^{T}\right]$. The forward kinematics of the snake would include the multiplication of 12 pairs of such transformation matrices with the first one being $\left[R_{6},(0,0,0)^{T}\right]$, which is then postmultiplied by $\left[\mathbb{I},(0,0,-0.00195)^{T}\right]$.

Figure 6: Frame Transformation in the Snake Robot
3. Forward Kinematics from Eye Origin to the First Virtual Snake Joint

Given the rotations around y-axis and x-axis and insertion distance of I^{2} RIS, we can find out the transformation matrix between the eye origin and the first virtual snake joint $F=F_{1} \cdot F_{2} \cdot F_{3}$. And $F_{1}=$ $\left[\operatorname{Rot}((0,1,0), q 4),(0,0,0)^{T}\right], F_{2}=\left[\operatorname{Rot}((1,0,0), q 5),(0,0,0)^{T}\right]$ and $F_{3}=\left[\mathbb{I},(0,0,- \text { insertion distance })^{T}\right]$.
4. Inverse Kinematics

Figure 7: Kinematics Model including the Eye and Sclerotomy

To control the robot and surgical tool in the eyeball, we are given the frame of eye origin and the frame of the goal position of snake tip $F_{\text {input }}$. Since the forward kinematics of the snake contains high order terms, it is difficult to solve for inverse kinematics analytically. Therefore, we choose a numerical solver to solve for inverse kinematics from eye origin (sclerotomy) to tool tip using gradient descent and an analytical solver to solve for the rest of the joints.

```
Algorithm 1: InvKinSolver
    Input: \(p_{\text {goal }}\) in terms of x,y,z,alpha,beta,gamma and \(q_{\text {curr }}\)
    Output: \(q_{\text {goal }}\)
    error \(=\) some large number
    while \(\Delta x \geq\) error threshold do
        \(F_{\text {rod }}=f\left(\right.\) dist, roll \(_{\text {rod }}\), pitch \(\left._{\text {rod }}\right)\)
        \(F_{\text {snake }}=f\left(\right.\) pitch \(_{\text {snake }}\), yaw \(\left._{\text {snake }}\right)\)
        \(F_{\text {eye }}=F_{\text {rod }} \cdot F_{\text {snake }}\)
        error \(\Delta x=\) goalposition - currentposition
        \(\operatorname{pinv}\left(J a c o b i a n\left(q_{c u r r}\right)\right) \rightarrow\) InvJacobian
        InvJacobian \(\cdot(\alpha \cdot \Delta x) \rightarrow \Delta q\)
        \(q_{\text {curr }}+\Delta q \rightarrow q_{\text {curr }}\)
        \(q_{\text {goal }}-q_{\text {curr }} \rightarrow \Delta x\)
```


Appendices

```
function F = FwdKin_Base_RodTip(ql,q2,q3,q4,q5)
    % generated from joints of robot URDF
    Fl = getF(eye(3),[0 0 0.0127]); % translate up to linear_y
    F2 = getF(eye(3),[0 ql 0.04725]); % ql joint (y)
    F3 = getF(eye(3),[0 0 0.0127]);
    F4 = getF(eye(3),[q2 0.0075 0.04725]); % q2 joint (x)
    F5 = getF(eye(3),[0 0.058 0.15858]);
    F6 = getF(eye(3),[0 0.04725 q3]); % q3 joint (z)
    F7 = getF(Rot([0 1 0],q4),[0 0.063 0]); % q4 joint (roll)
    F8 = getF(Rot([l 0 0],q5),[0 0.304 0.015]); % q5 joint (pitch)
    F9 = getF(Rot([l 0 0],-q5),[0 -0.023 0.048]); % rotating vertical link to horizontal link
    F10 = getF(Rot([1 0 0],q5),[0 0.120 -0.015]); % rotating horizontal link to IRIS
    Fll = getF(eye(3),[0 0.02177 -0.07628]); % -0.00007 is ?????
    F12 = getF(eye(3),[0 0 0.00065]); % from center of snake_l to start of first virtual snake joint
    F = F1*F2*F3*F4*F5*F6*F7*F8*F9*F10*F11*F12;
end
|function F = FwdKin_RodTip_SnakeTip(q6, q7)
    axis_6 = [[\begin{array}{lll}{0}&{1}&{0}\end{array}];
    axis_7 = [l 0 0];
    R6 = Rot(axis_6,q6);
    R7 = Rot(axis_7,q7);
    %starts at first virtual joint (q6)
    F6 = getF(R6,[0 0 0]);
    F6a = getF(R6,[0 0 -0.0016]);
    F7 = getF(R7,[0 0 0.00145]);
    F7a = getF(R7,[0 0 -0.0016]);
    F6b = getF(R6,[0 0 0.00145]);
    F6c = getF(R6,[0 0 - 0.0016]);
    F7b = getF(R7,[0 0 0.00145]);
    F7c = getF(R7,[0 0 -0.0016]);
    F6d = getF(R6,[0 0 0.00145]);
    F6e = getF(R6,[0 0 -0.0016]);
    F7d = getF(R7,[0 0 0.00145]);
    F7e = getF(R7,[[0 0 -0.0016]);
    F6f = getF(R6,[0 0 0.00145]);
    F6g = getF(R6,[0 0 -0.0016]);
    F7f = getF(R7,[0 0 0.00145]);
    F7g = getF(R7,[0 0 -0.0016]);
    F6h = getF(R6,[0 0 0.00145]);
    F6i = getF(R6,[0 0 -0.0016]);
    F7h = getF(R7,[0 0 0.00145]);
    F7i = getF(R7,[0 0-0.0016]);
    F6j = getF(R6,[0 0 0.00145]);
    F6k = getF(R6,[000-0.0016]);
    F7j = getF(R7,[0 0 0.00145]);
    F7k = getF(R7,[0 0 -0.0016]);
    F_tip = getF(eye(3),[0 0 -0.00195]);
    sends at rotation of joint q7k
    FA = F6*F6a*F7*F7a*F6b*F6c*F7b*F7c;
    FB = F6d*F6e*F7d*F7e*F6f*F6g*F7f*F7g;
    FC = F6h*F6i*F7h*F7i*F6j*F6k*F7j*F7k*F_tip;
    if isnumeric(q6)
        F=FA*FB*FC;
    else
        F = simplify(FA)*simplify(FB)*simplify(FC);
    end
- end
```

```
function F = FwdKin_EyeOrigin_RodTip(roll,pitch,dist)
    svirtual kinematics of the IRIS rod that is within the eye
    %INPUT: roll pitch insertion_distance
    %output: foward transformation
    Fl = getF(Rot([[0 1 0], roll),[0 0 0 0]); % roll
    F2 = getF(Rot([l 0 0],pitch),[0 0 0]); % pitch
    F3 = getF(eye(3),[0 0 -dist]);
    F = F1*F2*F3;
end
classdef InvKinSolver
```

```
    properties
```

 properties
 Jacobian0bj
 end
 methods
 function obj = InvKinSolver()
 obj.JacobianObj = Jacobians();
 end
 function q = InvKin(obj,pose_goal,q_curr)
 % INPUT: pose_goal is x,y,z,alpha,beta,gamma
 % q_curr is the current joint value
 % OUTPUT: q_goal
 alpha = 0.5;
 error = 1; %some large initial value
 q = q_curr;
 xyz_goal = transpose(pose_goal(1:3)); %the goal pos
 %J = Jacobians();
 while error > 0.00005 %0.01 mm error
 %disp("error: " + num2str(error));
 F= InvFwdKin_RCM_Eye0rigin(q(1),q(2),q(3))*FwdKin_RCM_RodTip(q(4),q(5))*FwdKin_RodTip_SnakeTip(q(6),q(7));
 xyz = round(F(1:3,4),8); %current position
 del = round(xyz_goal-xyz,8);
 disp("xyz_goal");
 disp(transpose(xyz_goal));
 disp("xyz_curr");
 disp(transpose(xyz));
 disp("del");
 disp(del);
 error = double(round(norm(del),5));
 dist = round(0.02763-norm(q(1:3))*\operatorname{sign}(q(3)),8);
 dist = min(dist,0.02763); sdist can't more than the length of the rod to RCM point
 disp("dist");
 disp(dist);
 deltaX = alpha*(del);
 dist q(5) q(4) q(7) q(6)
 dQ = transpose(obj.JacobianObj.EyeInvLookUp([q(4) q(5) dist q(6) q(7)])*deltaX) ; %get [dRoll dPitch dDist dSnakeYaw dSnakePitch]
 dQ = round(dQ,8);
 disp("dQ");
 disp(dQ);
 dist_new = round(dist + dQ(3),8);
 deltaQ = [00 0 0 dQ(1) dQ(2) dQ(4) dQ(5)];
 disp("deltaQ:");
 disp(deltaQ);
 q = double(q+deltaQ);
 linear = FwdKin_EyeOrigin_RCM(q(4),q(5),dist_new); %backsolve for linear motors
 q(1:3) = [linear(2,4) linear(1,4) linear(3,4)];
 disp("curr q");
 disp(q);
 q = q_limits(q); %% Insert constraints here
 end
 end
 end
 end

```

\section*{References}```

