Kinematics Model

M crc-forcena

roa-m
L L r——
-

ﬁwrw

Il"'\-_o-“]l_

&.3__3,/‘ .

Figure 1: Overview of SHER and I?RIS

1. Forward Kinematics of SHER
SHER has a total of 5 joints, including x,y and z translations and rotations around y-axis and x-axis.
These joints are called ¢; to g5 respectively. We will use the notation F = [R,p] for transformation
and Rot(axis, angle) for rotation.

linear_3

Z stage
j5tel
b4sE3pldte

Figure 2: Frames including X and Y Stages

From ”base_plate” to "linear_1”, Fy = [L, (0,0,0.0127)7]
From "linear_1” to ”"spacer”, Fy = [I, (0, g1,0.04725)7]
From ”spacer” to ”linear_2”, F3 = [I, (0,0, 0.0127)7]

From ”linear_2” to "z_stage”, Fy = [, (g2, 0.0075,0.04725)7]
From ”z_stage” to "linear_3”, F5 = [L, (0, 0.058,0.15858)7]

SHITR haRiR0e

S-'EP-.\arizontal_1
:n 2*FFS"_vertlcal_l

criake 1

Figure 3: Frames including Z Stages, Roll and Pitch

From "linear_3” to "rotary_stage”, Fg = [I, (00.04725, q3)7]
From "rotary_stage” to ”SHER_base”, F; = [Rot((0,1,0), q4),
From ”"SHER _base” to ”SHER_ horlzontal 17, Fs = [Rot((1,0,
From ”"SHER_horizontal 1" to ”SHER,VertlcaLl Fy = [Rot(
From ”SHER _vertical_1” to "IRIS”, Fjo = [Rot((l 0,0),4¢5), (
From "IRIS” to ”Snake_1”, Fi; = [I, (0,0.02177, —0. 07628)T]

From ”Snake_1” to 7127 (first virtual snake Jomt), Fi5 = [I,(0,0.02177, —0.07628) 7]
The forward kinematics of SHER is then multiplication of F} to Fis.

(0,0.063,0)7]

0),gs), (0,0.304,0.015)7]

(1,0 0),—q5) (0, —0.023,0.048)7]
0,0.120, —0.015)]

. Forward Kinematics of I?RIS

I?RIS has two input joint angles named gg and g7. These two angles control the amount and direction
of rotation between each two links of the snake. Note that the direction of rotation alternates from
link to link, and is perpendicular to the last one. gg represents the rotation around the y-axis, while
q7 represents the rotation around the x-axis.

Figure 4: Snake End of I?RIS

There is a spherical face between each two link of the snake. We can construct two virtual circles as

shown in Figure 5, which fits the spherical surfaces, to represent rotation between links. We denote the
rotation around y-axis Rg = Rot((0,1,0),¢6) and the rotation around x-axis R; = Rot((1,0,0), ¢7).

Figure 5: Joint Mechanism of Snake Distal End

The transformation between any two links could be represented as two transformation matrices with the
same rotation part (either Rg or R7) such as Fr, = [Ry7, (0,0,0.00145)7] and Fy, = [Ry, (0,0, —0.0016)7].
The forward kinematics of the snake would include the multiplication of 12 pairs of such transformation
matrices with the first one being [Rg, (0,0,0)7], which is then postmultiplied by [L, (0,0, —0.00195)7].

Figure 6: Frame Transformation in the Snake Robot

3. Forward Kinematics from Eye Origin to the First Virtual Snake Joint
Given the rotations around y-axis and x-axis and insertion distance of I?RIS, we can find out the trans-
formation matrix between the eye origin and the first virtual snake joint F' = F - Fy - F3. And F} =
[Rot((0,1,0),¢4), (0,0,0)T], F» = [Rot((1,0,0),¢5), (0,0,0)”] and Fs = [L, (0, 0, —insertion distance)T].

4. Inverse Kinematics

_ Eye origin (Sclerotomy)
/

Figure 7: Kinematics Model including the Eye and Sclerotomy

To control the robot and surgical tool in the eyeball, we are given the frame of eye origin and the
frame of the goal position of snake tip Fj,pu¢. Since the forward kinematics of the snake contains high
order terms, it is difficult to solve for inverse kinematics analytically. Therefore, we choose a numerical
solver to solve for inverse kinematics from eye origin (sclerotomy) to tool tip using gradient descent
and an analytical solver to solve for the rest of the joints.

Algorithm 1: InvKinSolver

Input: pgoq in terms of x,y,z,alpha,beta,gamma and geurr
Output: qgoa

error = some large number

while Az > error threshold do

Froa = f(dist,roll,od, Ditchroq)

Fonake = f(pitChsnakea yawsnake)

Feye = Frod * Fsnake

error Ax = goalposition — currentposition
pinv(Jacobian(qeyrr)) — InvJacobian
InvJacobian-(o - Ax) — Aq

Geurr + Aq — Qeurr

Qgoal~Gecurr — Ax

Appendices

function F = FwdKin_Base_RodTip(ql,q2,q93,94,q5)
% generated from joints of robot URDF

Fl =
F2 =
F3 =
F4 =
Fs =
F& =
F7 =
Fa =
Fo =

end

Flo
F11
Flz2

= getF(Ro

¥
= getF(ey

getFleye(3),[0 0 0.0127]); % translate up to linear_y

getFleye(3),[0 g1 0.047251); % gl joint (y)

getFleye(3),[0 0 0.0127]);

getFleye(3), [q2 0.0075 0.04725]1); 3% g2 joint (x)

getFleye(3), [0 0.058 0.15858]);

getFleye(3), [0 0.04725 g3]); % g2 joint (=)

getF(Rot([0 1 0],q4),[0 0.063 0]); % g4 joint (roll)

getF(Rot([1 @ @],qg5),[0 0.304 0.015]); % g5 joint (pitch)

getF(Rot([1 0 @],-q5),[0 -0.023 0.048]); % rotating vertical link to horizontal link
t 0],g5),[0 0.120 -0.015]1); % rotating horizontal link to IRIS
e 0.02177 -0.07628]); % -0.00007 1s 77777
e 0 0.00065]); % from center of snake_l to start of first virtual snake

)
Q
1
1
[
getF(eye(3
3

[
[
[
([1 0
(3),1
(3),1

’

(ol o]

FL#F 2HF 3HF 4+ FSHEEHE 7HEEHFO#F L O*F 1 1+F12;

function F = FwdKin_RodTip_SnakeTip(g6, q7)
axis_6 = [0 1 0];

axis_7 = [1 0 0];

R6 = Rot(axis_6,q6);

= Rot(axis_7,q97);

end

R7

%starts at first wvirtual joint (g6)
= getF(Rﬁ,[O Q O]:l

Fﬁa

F?a
F&b
F&c
F7b
F7c
F&d
F&e
F7d
F7e
F&f
F&g
F7f
F7g
F&h
F&1
F7h
F71
F5]
F&k
F7]
F7k =

1

),

= getF(R?,[0 -0.0016]);
= getF(R5, [0 0 0.00145]);
= getF(Rs, [0 0 -0.0015]);
= getF(R7,[0 0 0.00145]);
= getF(R7,[0 0 -0.0018]);
= getF(R6, [0 0 0.00145]);
= getF(R5, [0 0 -0.00158]);
= getF(R7,[0 0 0.00145]);
= getF(R7,[0 0 -0.00158]);
= getF(Rs, [0 0 0.00145]);
= getF(R5, [0 0 -0.0015]);
= getF(R7, [0 0 0.00145]);
= getF(R7,[0 0 -0.0015]);
= getF(R5, [0 0 0.00145]);
= getF(Rs, [0 0 -0.0015]);
= getF(R7,[0 0 0.00145]);
= getF(R7,[0 0 -0.0018]);
= getF(R5, [0 0 0.00145]);
= getF(R5, [0 0 -0.00158]);
= getF(R7,[0 0 0.00145]);
1

= getF(R7,[0 0 -0.0016]

F_tip = getF(eye(3),[0 0 -0.00185]);
%ends at rotation of joint g7k

FA
FB
FC

FE*FBa*F7+F7a*FEb*FEC*F7b*F7c;
FEA*FEe*F7d*F7e*F6f *FEg*F7f *F7g;
FEh*FE1*F7h*F71 *F6] *Fek*F7] *F7k*F_tip;

if isnumeric(qgs)

els

end

e

F = FAFB*FC;

F = simplify(Fa)*simplify(FB)*simplify(FC);

function F = FwdKin_EyeOrigin_RodTip(roll,pitch,dist)
] %virtual kinematics of the IRIS rod that i1s within the eye
%INPUT: roll pitch insertion_distance
F %output: foward transformation

Fl = getF(Rot([o 1 0],roll}),[0 0 0]); % roll
F2 = getF(Rot([1 @ 8],pitch),[0 @ &l); % pitch
F3 = getFleye(3),[0 0 -dist]);

F = FL¥F2+F3;

~end

classdef InvKinSolver

properties
JacobianObj
end

methods
function obj = InvKinSolver()
obj.JacobianObj = Jacobians();
end
function q = InvKin{obj,pose goal,q_curr)
% INPUT: pose_goal is x,y,z,alpha,beta,gamma
% g_curr is the current joint value
% DUTPUT: q_goal
alpha = 0.5;
error = 1; %some large initial value
q = g_curr;
xyz_goal = transpose(pose_goal(l:3)); %the goal pos
%] = Jacobians();
while error > ©0.08005 %0.01 mm error
sdisp("error: " + num2strierror));
F = InvFwdKin RCM_EyeOrigin(q(1),q(2),q(3})*FwdKin_RCM RodTip(q(4),q(5))*FwdKin RodTip_SnakeTip(q(6),q(7));
xyz = round(F{1:3,4),8); %current position
del = round(xyz_goal-xyz,8);
disp("xyz_goal");
disp(transpose(xyz_goall);
disp("xyz_curr");
disp(transpose(xyz));
disp("del");
disp(del);
error = double(round(norm({del),5));
dist = round{8.82763-norm{g(1:3))*signig(3)),8);
dist = min(dist,®.02763); %dist can't more than the length of the rod to RCM point
disp("dist");
displ(dist);
deltaX = alpha*(del);
% dist q(5) ql(4) q(7) q(6)
dQ = transpose(obj.JacobianObj.EyeInvLookUp([q{4) q(5) dist q(6) q(7)]1}*deltaX) ; %get [dRoll dPitch dDist dSnakeYaw dSnakePitch]
dQ = round(dQ,8);
% disp("dQ");
% disp(dd);
dist new = round(dist + dQ(3),8);

deltaQ = [0 0 @ do(1) do(2) do(4) do(5)1;
% disp("deltaQ:"};
% disp(deltad);

q = double(q+deltaq);

linear = PwdKin_EyeOrigin_RCM{q({4),q(5),dist_new); %backsolve for linear motors
q(1:3) = [linear(2,4) linear(l,4) linear(3,4)];

% disp("curr q");

% disp(q);
q = q_limits{q}; %% Insert constraints here

end
end
end
end

References

