

High-Dexterity Intra-Ocular Manipulation

Project Checkpoint

Kaiyu Shi, Yishun Zhou

4/6/2021

EN.601.656 Computer Integrated Surgery II

Confidentia

Project Overview

- Integrate kinematics of 2 DoF distal-end "snake" manipulator with 5 DoF Steady Hand Eye Robot
- Constrained control with Phantom Omni
- Perform simulation with Gazebo, with force sensors

Dependencies

Dependency	Status	Contingency	Followup	Funding	Deadline	Situation	
SHER	Exists	Simulation	-	JHU Internal Funding	-		~
I ² RIS	No FBG force sensors	Only implement position control/FBG in simulation	Discuss with Prof. Iordachita	JHU Internal Funding	3/29	No FBG sensors	X
Computer running Linux for simulation	Exists	-	-	Personal computer	-		\checkmark
Phantom Omni	In lab	Joy-stick input/keyboard input	-	JHU Internal Funding	-	Acquired w/ ROS packages & linux laptop	\checkmark

Deliverables

	Milestones	Planned Deadline	Status	Deliverables	Planned Deadline	Status
Minimum	Forward kinematics model	3/8	\checkmark	A report that includes calculation of forward kinematics	3/8	\checkmark
	Inverse kinematics model	3/8 4/10	Missing some optimization	A report that includes of inverse kinematics, and jacobian of the combined system	3/8 4/10	Missing some optimization
	Force distribution model	3/15	\checkmark	A report on the force distribution analysis	3/15	\checkmark
	Control algorithm pseudocode	3/29 4/10	In progress	A schematic of the control algorithm design	3/29 4/10	In progress
Expected	Setup robot model in Gazebo	3/4	\checkmark	A functioning gazebo simulation in which the end- effector of the simulated eye robot follow several optimized trajectories	<mark>4/5</mark> 4/10	In progress
	Control algorithm testing and validation in simulation	<mark>4/5</mark> 4/20		A report that summarizes the control algorithm, and an evaluation of the simulated system	5/5	
Maximum	Control algorithm testing and validation on real robot	<mark>4/19</mark> 4/30		Implemented control system on real hardware	5/5	
				Documentation of implementation	5/5	

Timeline

				Feb 15, 2021 Feb 22, 2021	Mar 1, 2021	Mar 8, 2021	Mar 15, 2021	Mar 22, 2021	Mar 29, 2021	Apr 5, 2021	Apr 12, 2021	Apr 19, 2021	Apr 26, 2021	May 3, 2
122.6				15 16 17 18 19 20 21 22 23 24 25 26 2	728123456	7 8 9 10 11 12	13 14 15 16 17 18 19 20	21 22 23 24 25 26 27	7 28 29 30 31 1 2 3 4	4 5 6 7 8 9 10	0 11 12 13 14 15 16	17 18 19 20 21 22 23 3	24 25 26 27 28 29 30 :	12345
TASK GNE	PROGRESS	START	END	M T W T F S S M T W T F	S M T W T F S	S M T W T F	S S M T W T F S	S M T W T F S	S M T W T F S S	SMTWTFS	S M T W T F	S S M T W T F	S S M T W T F	s s м т w [.]
Minimum														
Literature review	100%	2/17/21	2/24/21											
Setup Gazebo	100%	2/22/21	3/4/21											
Setup Gazebo: generate files	100%	2/22/21	2/25/21											
Setup Gazebo: create simulation	100%	2/26/21	3/4/21			•	Inverse kii	nematics t	took longei	r t <mark>h</mark> an ex	pected			
Forward kinematic model	100%	2/22/21	3/8/21			•	More time	e for ontin	nization of	end effe	ctor orie	ntation		
Forward kinematic model: analysis	100%	2/22/21	2/28/21											
Forward kinematic model: coding	100%	3/1/21	3/8/21											
inverse kinematic model	95%	3/10/21	4/10/21											
Inverse kinematic model: analysis	100%	3/10/21	3/31/21											
Inverse kinematic model: coding	95%	4/1/21	4/10/21											
A report that includes calculation of for jacobian of the combined system	ward kinematics	s, inverse kine	matics, and								▲ ▲	issing som	e optimiza	ation
Analyze force distribution	100%	3/9/21	3/15/21											
A report on the force distribution analy	ysis													
Expected														
Control algorithm	50%	3/29/21	4/20/21											
Control algorithm: create psuedocode	50%	3/29/21	4/10/21											
Control algorithm: write code	50%	4/10/21	4/15/21									🛏 Pushe	ed back	
A schematic of the control algorithm de	sign												X	
Control system: testing and validation	0%	4/16/21	4/20/21											
A functioning gazebo simulation in whic robot follow several optimized trajectories	ch the end-effect	tor of the simu	ulated eye											
A report summarizing the control algorith	ım and evaluatic	on of the simul	lated system											
Maximum													*	
Real system	0%	4/21/21	5/5/21											
Real system: imprement code	0%	4/21/21	5/5/21											
Real system: testing and validtion	0%	4/21/21	5/5/21											
Documentation of implementation														

Simulation

- Simulated in Gazebo
- Robot defined in URDF format
- Velocity controlled joints controllable via ROS topic

Forward Kinematics [1/3]

Forward Kinematics of SHER

- q₁: x translation
- q₂: y translation
- q₃: z translation
- q_4 : roll
- q₅: pitch

CIS I Transformations: F = [R, p] $F_1F_2 = [R_1R_2, p_1+R_1p_2]$

[2] Jinno et al., 2021

Forward Kinematics [2/3]

Forward Kinematics of I²RIS (Snake)

- q₆: snake yaw
 - R₆ = Rot((0 1 0),q₆)
- q₇: snake pitch
 - R₇ = Rot((1 0 0),q₇)

Rolling surfaces complicates kinematics

Solution: pair of virtual joints between each link:

- $F_{7a} = [R_{7}, (0\ 0\ 0.00145)]$
- F_{7b} = [R₇,(0 0 -0.0016)]
- 12 pairs of such transformation matrices multiplied

Forward Kinematics [3/3]

Forward Kinematics from Eye Origin to the tip of Snake The eye origin frame is defined to be the same orientation as the base of SHER

 $F_{rod} = f(dist, roll_{rod}, pitch_{rod})$ $F_{snake} = f(pitch_{snake}, yaw_{snake})$

Robot joints: $q = [q_1 \ q_2 \ q_3 \ q_4 \ q_5 \ q_6 \ q_7]$

Virtual joints inside eye: $q_{eye} = [dist \ roll_{rod} \ pitch_{rod} \ pitch_{snake} \ yaw_{snake}]$

Inverse Kinematics [1/2]

Phantom Omni input by user is relative to the eye

Therefore, solving inverse kinematics relative to the eye is desirable

 $F_{rod} = f(dist, roll_{rod}, pitch_{rod})$ $F_{snake} = f(pitch_{snake}, yaw_{snake})$ $F_{eye} = F_{rod}F_{snake}$

 $\delta(F_{eye})/\delta(q_{eye}) \rightarrow$ Jacobian

We use gradient descent to find a solution:

```
while ||\Delta x|| < \epsilon:

psuedoinv(Jacobian(q_{curr})) -> InvJacobian

InvJacobian*(\alpha\Delta x) -> \Delta q

q_{curr} + \Delta q -> q_{curr}

q_{goal} - F(q_{curr}) -> \Delta x

return q_{curr}
```

Inverse Kinematics [2/2]

Jacobian as a function has a lot of terms:

- Takes ~0.2 seconds to compute in MATLAB
- InverseKinematicsSolver() takes ~2 seconds to find solution
 ... too slow!

Alternatively, look up table of precalculated inverse jacobians:

- 29 increments for every eye joint, covering full range of configuration space.
- 1.3 GB array loaded once into memory
- Takes ~0.0002 seconds to compute in MATLAB
- InverseKinematicsSolver() takes ~0.002 seconds, can work in "real time".

s(s pitch).^2.*cos(s yaw).^2.*5.8e-3-cos(s pitch).^2.*cos(s yaw).

Moving in Gazebo

Motion Planning

ValidQ() function determines if configurations of q are invalid:

- If end effector is outside ocular workspace
- If configuration intersects or obstructs light emitter
- Other cases

1st Method: Linear interpolation

- Generate nodes linearly between q_{curr} and q_{goal}
 - Check every node with ValidQ()

2nd Method: Probabilistic graph search

- Probabilistic RoadMap Planning (PRM) [3]
- Valid path is found by Dijkstra's algorithm or similar method

S. LaVelle, E Plaku

Force Distribution Model [1/2]

Force at the Tip

- FBG sensor readings can be related to force

$$\Delta S_I = K_I F_I, \ F_I = [F_{Ix}, F_{Iy}]^T$$

- Solve a system of three equations with three unknowns

$$\vec{F_t^I} \cdot \vec{x_I} = (R_{It} \cdot \vec{F_t}) \cdot \vec{x_I} = F_{Ix}$$
$$\vec{F_t^I} \cdot \vec{y_I} = (R_{It} \cdot \vec{F_t}) \cdot \vec{y_I} = F_{Iy}$$
$$(\vec{p_{It}} \times \vec{F_t^I})_3 = (\vec{p_{It}} \times (R_{It} \cdot \vec{F_t}))_3 = 0$$

FIL= [RIL, PIL]

Fer

Force Distribution Model [2/2]

Force at the Sclerotomy

- FBG sensor readings can be related to torque

$$\Delta S_j = K_j \tau_j, \ \tau_j = [\tau_{jx}, \tau_{jy}]^T, \ j = II, III$$

ERM

$$\vec{\tau}_t^j = \vec{p}_{jt} \times (R_{jt} \cdot \vec{F}_t)$$

- Solve a system of three equations with three unknowns

$$F_{sy} = \frac{\tau_{s,1}^{III} - \tau_{s,1}^{II}}{\Delta l}$$
$$F_{sx} = \frac{\tau_{s,2}^{II} - \tau_{s,2}^{III}}{\Delta l}$$
$$d_j = \frac{||\tau_s^j||}{||F_s||}$$

Management Plan

- Meetings:
 - Meet weekly (Wed 11 am) with Dr. Li and Prof. lordachita over Zoom
 - Meet with Dr. Li in lab as needed
 - Weekly team meetings (Tuesday 4:00-5:00 pm), and on-demand
- Files:
 - Code & CAD: Private Github Repo
 - Literature & Deliverables: OneDrive
- Communications:
 - Email between mentors and the team
 - Slack between the team members

Reference

[1] 3D Systems. "Touch." *3D Systems*, 4 June 2020, www.3dsystems.com/haptics-devices/touch.
[2] Makoto Jinno, Gang Li, Niravkumar Patel, Iulian Iordachita, "An Integrated High-dexterity Cooperative Robotic Assistant for Intraocular Micromanipulation", 2021., Kokushikan University
[3] Kavraki, L.E., et al. "Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces." *IEEE Transactions on Robotics and Automation*, vol. 12, no. 4, 1996, pp. 566–580., doi:10.1109/70.508439.

Thank You