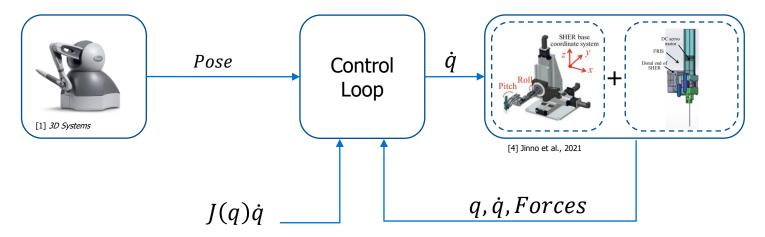


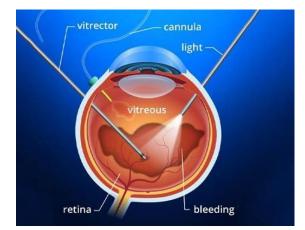
Integrated High-Dexterity Intraocular Micromanipulation Project Plan

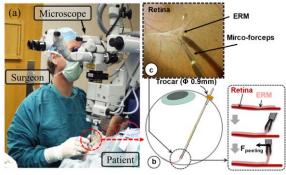

Kaiyu Shi, Yishun Zhou

EN.601.656 Computer Integrated Surgery II

2/18/2021

Project Description


- Integrating control of 2 DoF distal-end "snake like" manipulator with 5 DoF Steady Hand Eye Robot, for a combined 7 DoF
- Simulating in Gazebo



Motivation

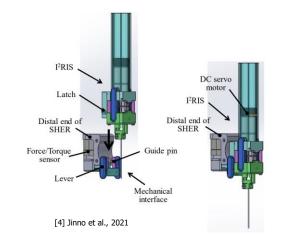
- Challenge: Vitreoretinal surgery requires advanced surgical skills at or over the limit of surgeons' physiological capabilities [4]
 - Confined intraocular space
 - Restricted free motion of surgical tools
 - The forces exerted between ophthalmic tools and eye tissues are often well below human sensory thresholds
- Epiretinal membrane (ERM) peeling [3]:
 - Forces not detectable by surgeon
 - Forces exceeding 7.5 mN can cause irreversible damage and loss of vision

[2] https://neoretina.com/

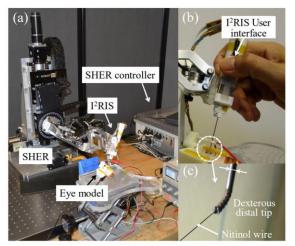
From Dr. Iordachita

Motivation

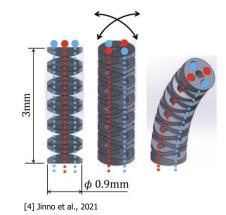
- **Solution:** Surgeon controlled robotic system with snake-like distal end
 - Tremor free tool manipulation
 - Greater dexterity access to target from suitable directions
 - Force sensing at the tool tip enables numerous capabilities

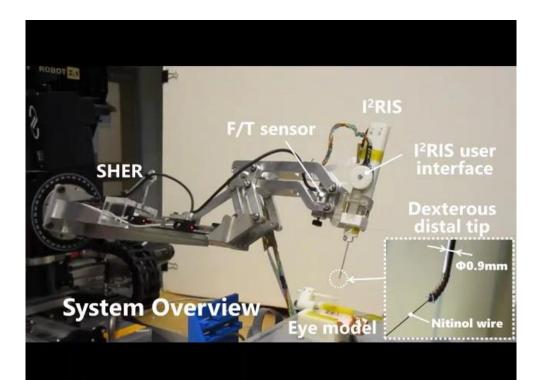

Team

- Team members:
 - Kaiyu Shi: 2nd year Robotics MSE student
 - Yishun Zhou: 1st year Robotics MSE student
- Prof. Iulian Iordachita: principal investigator
- Dr. Gang Li: primary mentor



Prior Work


- SHER (Steady Hand Eye Robot) [5]
- I²RIS (Improved Integrated Robotic Intraocular Snake) [6]
- Cooperative control/manual control



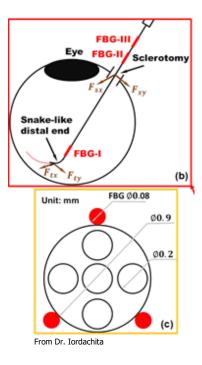
[4] Jinno et al., 2021

Prior Work

Goals for the Semester

Analyze the kinematics and force distribution of the integrated system

- Kinematics -> Move tool tip along trajectories
- Force distribution -> Calculate force at tool tip and point of insertion
- Design a control algorithm to generate an optimized trajectory & remain within force limits
- Simulate the system to follow desired trajectories in Gazebo
- Control the combined robot with a Phantom Omni



[6] Nigrelli, V. et al., 2008

Technical Approach

- Generate kinematics and force distribution model
 - Get measurement of the robot from CAD model
 - Analyze the forward kinematics, inverse kinematics, and Jacobians of the integrated system
 - Calibration of the kinematics model with the real robot
 - Calculate the force between the tool-tip and retinal tissue based on FBG force-sensor readings and the pose of the snake-like distal end

Technical Approach

- Develop control algorithm
 - $_{\odot}\,$ Understand the mechanical design of SHER base and I^2RIS robot
 - Literature review of robot control algorithms suitable for our application
 - Requirements:
 - Tremor-free manipulation
 - Limited error between performed and desired trajectories of the robot
 - Must stay within force and space constraints
- Gazebo simulation
 - Simulate with appropriate mechanical properties & meshes
 - Control combined robot system with ROS (Robot Operating System) platform

Deliverables

	Deliverables	Deadline
Minimum	A paper that includes calculation of forward kinematics, inverse kinematics, and jacobian of the combined system	3/8
	A report on the force distribution analysis	3/15
	A schematic of the control algorithm design	3/29
Expected	A functioning gazebo simulation in which the end-effector of the simulated eye robot follow several optimized trajectories	4/5
	A report that summarizes the control algorithm, and an evaluation of the simulated system	5/5
Maximum	Implemented control system on real hardware	5/5
	Documentation of implementation	5/5

Timeline

				Feb 1	15, 202	21	Feb	22, 202	21	м	lar 1, 2	2021		Ma	ır 8, 20)21		Mar :	15, 202	21	Ma	ar 22, 2	021		Mar	9, 202	1	A	pr 5, 2021
				15 16	17 18	19 20 2	1 22 23	3 24 25	26 27 2	28 1	23	45	67	8 9	9 10 1	1 12 1	3 14 1	5 16	17 18	19 20 2	21 22 2	3242	5 26 27	28	29 30	31 1	234	4 5	678
ТАЅК	PROGRESS	START	END	мт	wт	FS	s м т	w т	FS	s M	тw	TF	s s	мт	r w ·	T F S	s I	мт	wт	FS	S M 1	rw 1	FS	s	мт	wт	FS	я м	т w т
Minimum																													
Literature Review	0%	2/17/21	2/24/21																										
Import models into Gazebo	0%	2/22/21	3/4/21																										
Develop combined kinematic mode	0%	2/22/21	3/8/21																										
Analyze force distribution	0%	3/9/21	3/15/21																										
Expected																													
Develop control algorithm	0%	3/16/21	3/29/21																										
Test and validate control algorithm	0%	3/30/21	4/5/21																										
Maximum																													
Implement algorithm with physical :	0%	4/6/21	4/12/21																										
Test system with same prior tests	0%	4/13/21	4/19/21																										
Final Report																													
Write up report	0%	4/20/21	4/29/21																										
Presentation	0%	4/26/21	5/6/21																										

Assigned Responsibilities

- Yishun:
 - Create kinematics model and force distribution model of the integrated robotic system
 - Develop control algorithm
- Kaiyu:
 - Develop control algorithm
 - Simulate the controlled system in gazebo to follow desired trajectories with appropriate constraints

Dependencies

Dependency	Status	Contingency	Followup	Funding	Deadline
SHER	Exists	Simulation	-	JHU Internal Funding	-
I ² RIS	No FBG force sensors	Only implement position control/FBG in simulation	Discuss with Prof. Iordachita	JHU Internal Funding	3/29
Computer running Linux for simulation	Exists	-	-	Personal computer	-
Phantom Omni	In lab	Joy-stick input/keyboard input	-	JHU Internal Funding	-

Management Plan

- Meetings:
 - Meet weekly with Dr. Li and Prof. Iordachita over Zoom (TBD)
 - Meet with Dr. Li in lab as needed
 - Weekly team meetings (Tuesday 4:00-5:00 pm)
- Communications:
 - Email between mentors and the team
 - Slack between the team members

Reading List

- Jinno, Makoto, and Iulian Iordachita. "Improved Integrated Robotic Intraocular Snake*." 2020 International Symposium on Medical Robotics (ISMR), 2020, doi:10.1109/ismr48331.2020.9312927.
- He, Xingchi. Force Sensing Augmented Robotic Assistance for Retinal Microsurgery. 2015. Johns Hopkins U, PhD dissertation.
- Azimi, Ehsan, et al. "Teleoperative Control of Intraocular Robotic Snake: Vision-Based Angular Calibration." 2017 IEEE SENSORS, 2017, doi:10.1109/icsens.2017.8234072.
- Üneri, Ali, Marcin A. Balicki, James Handa, Peter Gehlbach, Russell H. Taylor, and Iulian Iordachita. "New steadyhand eye robot with micro-force sensing for vitreoretinal surgery." In 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 814-819. IEEE, 2010.
- P. Gupta, P. Jensen, and E. de Juan, "Surgical forces and tactile perception during retinal microsurgery," in International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 1679, 1999, pp. 1218–1225
- Zhang, Ding-guo, and Sheng-feng Zhou. "Dynamic Analysis of Flexible-Link and Flexible-Joint Robots." Applied Mathematics and Mechanics, vol. 27, no. 5, 2006, pp. 695–704., doi:10.1007/s10483-006-0516-1.

[1] 3D Systems. "Touch." 3D Systems, 4 June 2020, www.3dsystems.com/haptics-devices/touch.

[2] Dr. Raja Rami Reddy PMD FRCS (Glasg). "Vitrectomy Surgery: Risks and Postoperative Care: Neoretina." *Neoretina Blog*, 15 Apr. 2019, neoretina.com/blog/what-to-expect-after-vitrectomy-surgery-vitreo-retinal-surgery-postoperative-course-and-care/.

[3] P. Gupta, P. Jensen, and E. de Juan, "Surgical forces and tactile perception during retinal microsurgery," in *International Conference on Medical Image Computing and Computer Assisted Intervention*, vol. 1679, 1999, pp. 1218–1225

[4] Makoto Jinno, Gang Li, Niravkumar Patel, Iulian Iordachita, "An Integrated High-dexterity Cooperative Robotic Assistant for Intraocular Micromanipulation", 2021., Kokushikan University

[5] Üneri, Ali, Marcin A. Balicki, James Handa, Peter Gehlbach, Russell H. Taylor, and Iulian Iordachita. "New steadyhand eye robot with micro-force sensing for vitreoretinal surgery." In 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 814-819. IEEE, 2010.

[6] Jinno, Makoto, and Iulian Iordachita. "Improved Integrated Robotic Intraocular Snake*." 2020 International Symposium on Medical Robotics (ISMR), 2020, doi:10.1109/ismr48331.2020.9312927.

