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1. Introduction

Hemothorax (HTX)—blood accumulation in the pleural cavity around the lungs—patients are
currently treated by qualitative estimates of blood volume using CT scans. To automate this
analysis, deep neural networks are employed to segment hemothoraces from patient CT scans.
The network segmentation is converted to an estimated volume, yielding an adjusted R of 0.91
compared with manually segmented volume, done by radiologists. This predicted volume is then
used as a predictor for a composite variable: patient requires massive transfusion or dies.
Together with clinical data, a random forest classifier achieves an auROC of 0.944, indicating
strong predictive capabilities for the composite variable.

2. Background

The current standard for estimating hemothorax volume is a qualitative grading done by
radiologists. However, such measurement is subjective and the reliability of measurements relies
on radiologists’ level of experiences. Even expert radiologists often disagree on the qualitative
estimates. In contrast to the qualitative measurement, manual segmentation produces precise,
quantifiable blood volume. However, this task is time-impermissible, especially for trauma cases.
Because an accurate hemothorax volume estimate can assist physicians in predicting patient
outcomes, such as the need for massive transfusion and mortality, there is a need for developing
a fast and reliable method to segment hemothorax CT scans and estimate corresponding volume.

There is no prior attempt for automatic hemothorax volumetry, yet researchers have tried to
semi-automate volumetry for pleural effusion, a condition where excess liquid including water
and blood accumulates around the lung [4]. Pleural effusion is a comparable condition to
hemothorax. However the methods utilized are generally rule-based or atlas based, which cannot
sufficiently handle anatomical distortion, heterogeneity of attenuation, and traumatic lung scenes.

We choose to develop a deep-learning model because it has shown to perform well in other
segmentation tasks. U-Net [1] and U-Net 3D [2] are two of the most famous deep neural
networks in the field of medical image segmentation.

3. Data

The original data comprises 94 patient cases including CT scans, corresponding manual
segmentations, and clinical variables. The clinical variables include age, sex, injury type, heart
rate, systolic blood pressure, and lactate concentration, which are selected by Dr. Dreizin and his
medical student Bryan Nixon; the variables are chosen for clinical relevance as they are available
upon admittance to a hospital and have the potential to correlate with prognostic dependent



variables. Of the 94 patients, only 78 had valid CT imagery as some had corrupted metadata
which prevented the calculation of the ground truth hemothorax volume. After removing these
erroneous instances, another case was removed for not having all clinical variables. Therefore,
the prognostics dataset used 77 patient cases.

The distribution of the hemothorax volumes is illustrated below:

4. Procedure Overview



5. Preprocessing

Dr. Dreizin manually segmented the hemothorax volumes on 94 patient CT scans. Of these 94
CT scans, 79 are suitable for the segmentation task because the other 15 have corrupt metadata in
which voxel dimensions are distorted and/or non-sense (e.g. some patients are 12m tall or
impossibly proportioned).

After removing these 15 bad data, the data are manually cropped to represent chest CT scans.
Most of the original data are full-body CT scans, so approximately 70GB out of the 90GB total
are removed through cropping. Scans are cropped on the z-axis below the liver and up to the
neck. The axial perspectives are preserved.

The cropped data are then converted from NIfTI format to 3D numpy arrays with isotropic
voxels. To transform the NIfTI data, python scripts are used to interpolate data to 1mm cubic
voxels, after which they are saved to disk in compressed format, requiring 7-8 GB total for the
compressed scans and segmentation masks. Decompressed, the data is approximately 18 GB.

The input is then padded to a fixed size for use in neural networks. To do this, the max shape size
of all 79 input volumes is found, after which the data are padded along the borders such that the
unpadded volume is in the center of the padded volume. Data are padded with -1024 to
approximate the Hounsfield unit for air.

Lastly, the data are normalized in two manners to be used for experimentation: normalization and
standardization. Normalization represents a simple linear scaling to the bounds [0,1].
Standardization centers the mean about zero and scales the data to a standard deviation of 1; this
method does not bound the data.

The dataset consists of axial CT scans with 1.5mm voxel resolution from 94 patients. In total, the
dataset is approximately 90 GB before preprocessing. Preprocessing involves three primary
stages; smoothing, interpolation, and construction of sagittal and coronal perspectives.
Smoothing is necessary to fill holes that are erroneously present from noisy manual labelling; it
is applied only to the segmentation masks. Trilinear interpolation is used to generate 1mm voxels
so that additional sagittal/coronal slices can be generated. This is useful for network training as it
smooths the objective functions. However, in total, the preprocessing multiplies the dataset size
in memory by 4.5 fold, reaching approximately 400 GB, averaging 4 GB per patient.

Cropping is performed on the remaining instances to make each instance only a chest CT scan so
that the axial perspective is preserved while the z-axis is cropped to the neck and below the liver.
Additionally, the 1mm cubic voxels are downsampled to 2mm to reduce the memory footprint



and padded to 256x192x256. Each instance, including both the scan and the mask, is then 144
MB. Larger networks will require downsampling to 8mm cubic voxels.

6. Deep Learning

Three deep networks are evaluated: UNet (2.5D) [1], UNet 3D [2], and UNet-FAN. UNet-FAN,
the architecture of which is illustrated below, was developed as a combination UNet (2.5D) and
PIPO-FAN [3]. PIPO-FAN validation yielded poor performance, so the trained UNet models
were used as replacement to the PIPO module to train the FAN scale-invariant attention module
post hoc. This transfer learning approach allowed the FAN module to apply attention
mechanisms to the multiscale features learned in UNet, slightly improving dice.

It was observed that training deep segmentation networks on left and right lungs individually
yielded superior dice scores than from training on the union of the left and right masks. The final
predicted volume takes the union of the left and right prediction masks.

All work was conducted on the cluster outlined below:



Figure E: Box plot of Dice score of all deep net modes used. UNet-FAN achieves slightly higher
dice score than UNet and much better than UNet 3D for all data: left lung, right lung, and the
union of the lungs.

7. Machine Learning

Machine learning was applied to predict a composite variable: whether a patient needed a
massive transfusion and/or the patient died in the hospital. Univariate analysis was conducted to
ascertain the predictive power of the expert volume estimation and the automatically predicted
hemothorax volumes for the composite outcome variable. Logistic regression was applied to the
independent variable volumes: qual (manual expert volume estimation), U-Net 3D, U-Net
(2.5D), and a model called U-Net-FAN, which is a combination of U-Net with PIPO-FAN. The
logistic regression results are outlined in the below tables as the average over 5-fold cross
validation:

Model tn tp fn fp tnr tpr fnr fpr npv ppv

qual 59 7 8 3 0.9513 0.4667 0.0487 0.5333 0.8832 0.7333

U-Net 3D 35 12 3 27 0.5615 0.8000 0.4385 0.2000 0.9325 0.3323

U-Net 2.5D 51 9 6 11 0.8218 0.6000 0.1782 0.4000 0.8949 0.5267

U-Net FAN 47 6 9 15 0.7538 0.4000 0.2462 0.6000 0.8608 0.3545



Model f1n f1p mcc auroc auprc_0 auprc_1 mae rmse

qual 0.9149 0.5333 0.4931 0.7609 0.6219 0.6590 0.5350 0.5390

U-Net 3D 0.6817 0.4556 0.3090 0.7692 0.7072 0.4755 0.5354 0.5409

U-Net 2.5D 0.8524 0.5289 0.4155 0.7017 0.7230 0.5319 0.5336 0.5378

U-Net FAN 0.7715 0.3000 0.1746 0.7081 0.7232 0.4900 0.5305 0.5344

Model pval aic bic adj_r2 conf_int (95%) coeff thresh_prob thresh_ml

qual 0.1207 136.5880 139.1851 0.0214 -0.0306   0.3498 0.1596 0.5791 3.0000

U-Net 3D 0.0712 135.7848 138.3819 0.0272 -1.7e-05   6.6e-04 0.0003 0.5697 676.8000

U-Net 2.5D 0.1292 136.1236 138.7207 0.0247 -1.4e-4   2.1e-3 0.0010 0.5816 336.2000

U-Net FAN 0.1416 136.2626 138.8597 0.0237 -2.0e-4   2.2e-3 0.0010 0.5794 318.0000

In addition to univariate analysis, clinical features are used for multivariate predictions. Eight
machine learning models [6] are evaluated: logistic regression, bayesian network with global
tabu architecture search, discrete naive bayes, gaussian naive bayes, decision table, linear support
vector machine, RBF support vector machine, and random forest. The random forest models
performed best, demonstrating comparable performance between the manual and automatic
features for the composite variable prognostics. The random forest results are detailed in the
below tables:

Model TNR TPR FNR FPR NPV PPV F1N F1P

qual 0.919 0.733 0.267 0.081 0.934 0.688 0.927 0.71

U-Net 3D 0.919 0.800 0.200 0.081 0.95 0.706 0.934 0.75

U-Net 0.919 0.80 0.200 0.081 0.95 0.706 0.934 0.75

U-Net FAN 0.919 0.800 0.200 0.081 0.95 0.706 0.934 0.75

Model MCC AUROC AUPRC_N AUPRC_P MAE RMSE Kappa

qual 0.637 0.945 0.986 0.855 0.1731 0.2829 0.6366

U-Net 3D 0.687 0.948 0.986 0.86 0.1735 0.2633 0.6847

U-Net 0.687 0.932 0.979 0.85 0.1836 0.2785 0.6847

U-Net FAN 0.687 0.944 0.987 0.768 0.1835 0.2831 0.6847



8. Result Visualization

A B C

Manual: 1502.5 mL Auto: 1350.8 mL DSC: 0.83

Manual: 848.5 mL Auto: 711.2 mL DSC: 0.84

Manual: 527.5 mL Auto: 605.3 mL DSC: 0.77

Manual: 63.7 mL Automated: 82.5 mL DSC: 0.47  

Manual: 80.6 mL  Auto: 80.2 mL DSC:  0.46
(A) Overlap (purple) of manual and automated (FAN UNET) hemothorax labels on axial images.
(B) 3D rendering of automated label. (C) 3D rendering of overlap (purple) between automated
(red) and manual (blue) labels.



9. Result and Analysis

Figure A: Dot matrix plot with best-fit line and 95% CI shows correlation between automated
volume (vol.) and manual hemoperitoneum volume. The prediction from human experts and our
deep learning is consistent.



Figure B: Bland-Altman plot shows 95% limits of agreement and measurement bias. On average,
there is a 0.6-mL underestimation by the deep learning algorithm. The bias is relatively small
and standard deviation is 155.6 mL.

Figure C: Distribution of Dice similarity coefficients (DSCs). The box plot in C2 shows DSC
improves/variance decreases with increasing vols at volume range 0-600 ml, (Levene’s test, p <
0.00001) explaining low DSCs in rows 4 and 5 (image left). In volume range >600ml, we have
only 7 instances and some of them are outliers, so the deep network does not learn this range
well so behavior in this range is not clear.



Figure D: Clustered box and whisker plots show prediction of a composite outcome for the need
for massive transfusion and in hospital mortality. Manual and HTXvol-auto vols both have
significant association with composite outcome (MT + IHM), with p = 0.0003 and 0.015
respectively.

In general, the deep network predicted volume and manual segmented volume are highly
associated with adjusted R=0.91 and the bias is very low at -0.6 mL. The Dice similarity
coefficient improves and its variance decreases as volume increases. The small hemothoraces
with lesser dice scores are clinically insignificant compared to the larger accumulations of blood.
Therefore, it is important that the performance of the automated volume estimates is best for
larger hemothoraces.

Both manual and predicted volume have significant association with the requirement for mass
transfusion and in-hospital mortality.

We are able to predict the composite outcome of MT+IHM using automated prediction volume
and 6 patient metadata (Age, Sex, HR, BP, lactate, injury-type: blunt / penetrating) with random
forest model and reach an auROC of 0.9440. This is at least as good as using expert information



from 2 radiologists.

The results suggest that the automated methods can replace expert analysis with comparable
performance, thereby reducing costs, labor, and improving availability to accurate prognostics.

10. Management

a) Who did what
Project plan and data preparation: All of us
Preprocessing and file IO: Chang Yan, Gary Yang
Pipeline and APIs: Benjamin Albert, Chang Yan
Normalization and Padding: Chang Yan, Benjamin Albert
Training: UNets (3D/2.5D/2D): Gary Yang, Chang Yan
Training: Attention Nets (3D/2.5D): Benjamin Albert
Training: SCMs: Chang Yan
Training: Multiscale Net (2.5D): Benjamin Albert
Training: Unet-FAN (Final model): Gary Yang
Evaluation API: Chang Yan, Gary Yang
Result collection and analysis: All of us
Result and data visualization: Chang Yan
Final poster, presentation and report: All of us

b) Meetings
As we had planned, the student team meets with each other almost everyday through
WeChat group or Zoom meetings. Progress is relayed to the mentors every couple of
weeks via text, email and zoom meetings. We had regular calls and texts with Dr. Dreizin
with a frequency higher than twice a week, and Dr. Dreizin discussed our result with Dr.
Unberath regularly. We had zoom meetings with both mentors at each milestone time.

c) What we accomplished vs planned
The “Minimum” part has been fully done as expected, including literature research,
preprocessing, APIs and model benchmarking. Preprocessing was a little over time
because of the severe data corruption we faced, and we had to manually check and
correct all data.
“Expected” part has been changed according to the benchmark result. The original plan
of doing ensemble has been replaced by trying more attention and multiscale modules,
and trying to combine them with Unet and transfer learning to get a higher result. The
structural causal models have been tested in various ways, and they turned out to not be
suitable for solving our model mostly due to the hardship of discovering strong causal
relationships from our data.



“Maximum” part has also been changed due to the lack of time and the new clinical data
we received. We decide to cancel the GUI part which is not essential to our project, and
replace it with implementing a model to predict the composite outcome of patient need
for massive transfusion and their in-hospital mortality rate using the predicted volume
and additional clinical data.
Details will be discussed in the “Deliverables” part later.

d) Future steps
1. Computing loss for each decoding layer
2. Adding data augmentation to counter the lack of large HTX cases
3. Real-world clinical application

e) What we learned
1. Time estimates were too short, particularly for the maximal deliverables
2. Agile development was more effective than waterfall methods
3. Concentrating developer time on related tasks was most effective
4. Making scripts/executables flexible with respect to the environment, such as directory

structures and command line arguments, was important

11.    Deliverables

Nearly half of our expected/maximum plan and deliverables has been adjusted multiple times
according to the milestone result and suggestion from our mentors. This is mostly due to two
reasons: First, our maximum plan on GUI and other visualization was too ambitious and there is
no way they can be done in one month, so they are cancelled and we switched to do the
composite outcome prediction as suggested by our mentors. Second, there are actually many
choices to improve the benchmark models to get a higher result, and only the benchmark analysis
itself can tell us which one is best to try. Thus, we switched from doing an ensemble to a
combined multiscale network with transfer learning.

Activities Result Deliverables Due Status

Minimum Literature survey for
model selection

Draft a list of open-source
models with code or
architecture description

Plan to test Unet, attention
nets and SCMs in
2D/2.5D/3D

2/22 Done

Preprocess CT scans
(interpolate, make 3d
slices)

Interpolate CT scans and
convert data to PyTorch
tensor type

Data stored on server 3/1 Done

Complete pipeline and
I/O APIs for the project

Build a network framework
consists of Python classes

Code with documentation
in private repo

3/1 Done



Benchmark
open-source models

Benchmark existing
open-source models
measured with Dice/Jaccard

Result reported in excel
sheet

3/21 Done

Expected Research on and
implement several
Deep Structural Causal
Models

Several implemented SCM 2 SCM implementations,
none outperforms other
models

3/26 Done

Research on and
implement several
multiscale Models

Implemented PIPO-FAN
deep network

Code with documentation
in private repo, result in
excel sheet

4/25 Added
Done

Implement a combined
model that outperforms
others as final model

Implemented Unet-FAN
combined deep network with
full analysis

Code with documentation
in private repo, result in
excel sheet. Also has a
visualization report.

4/25 Added
Done

Design and implement
an ensemble algorithm

A documented program that
estimates blood volume

Cancelled due to
benchmark analysis and
suggestions from
professors

4/4 Cancelled

Improve the ensemble
algorithm

A documented program
outperforms the benchmark

Cancelled due to
benchmark analysis and
suggestions from professor

4/11 Cancelled

Maximum Predict the requirement
for mass transfusion
and in-hospital
mortality rate using
predicted volume and
clinical data

A trained model that predicts
the outcome of each patient
using their predicted volume
and 6 clinical datas

Code with documentation
in private repo, result in
excel sheet.

4/30 Added
Done

Incorporate certainty
level into our algorithm

A documented program
visualizes confidence

Cancelled due to time 4/30 Cancelled

Implement a
GUI-program for
visualization

A documented program
incorporates the framework

Cancelled due to time 4/30 Cancelled
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